
Page 1 	

AP CS Unit 6: Inheritance Notes
Inheritance is an important feature of object-oriented languages. It allows the designer to create
a new class based on another class. The new class “inherits” everything the original class has
plus it may add additional instance variables and methods.

Let’s look at an example.
public class Runner {

public static void main(String[] args) {
Surprise x = new Surprise();
if (x.equals("ok "))

System.out.println("equal");
else

System.out.println("not");

public class Surprise {
}

	

String s = x.toString();
System.out.println(s);

}

This compiles, runs and prints:
not
Surprise@19821f (or something similar)

} 	 	

But how can it compile and run when the Surprise class has not defined an equals or toString
method? Has someone made a terrible mistake?

No.

The class is the root class of all java classes. It has 11 methods that all classes

inherit. You need to know 2 of these 11 methods:

public

public

Design Issue. How can you tell if one class should be a subclass of another class?

Ex 1. If you have an Elephant class and a Mammal class, should one or the other be a subclass of

the other?

Page 2 	

Ex 2. If you have a Room class and a Desk class, should one or the other be a subclass of the

other?

The original class is called the

The new class is called the

The variables and methods of the superclass become part of the subclass; they are inherited by the

subclass. The subclass may

• define

• define

• redefine inherited instance methods (this is called a method).

The headers should be identical (there are some exceptions which we will ignore).

Notice that the keyword is used to indicate that a class is a subclass of
another. A class can only have one immediate superclass but a given class may have many
subclasses.

Go to the java api and examine classes such as the String class and the JButton class.

public class Mammal{
public void speak(){

System.out.println("hey");
}

public String toString(){

return "mammal";
}

}

public class Dog extends Mammal{
public void speak(){

System.out.println("woof");
}

}

General Example of Inheritance.

Note. The println method is overloaded.
When you pass it an object variable, it will
call the object’s toString method.

What is displayed?

public class Runner {
public static void main(String[] args) {

Mammal a = new Mammal();
Dog d = new Dog();
System.out.println(a);
System.out.println(d);
a.speak();
d.speak();
System.out.println(a.equals(d));

}
}

Page 3 	

Inheritance and Constructors. The first thing a subclass constructor does is call (either

implicitly or explicitly) the constructor for the superclass.

public class AA{

private int a1;

public AA() {

n = 0;

}

public AA(int c) {

n = c;

}
}

public class BB extends AA{

private String str;

public BB(String s) {

OR

}
}

public class CC extends BB{

private int k;

public CC(int a) {

}

}

Important. If something is private in the superclass, it is not in any subclass.

Overriding Methods. A subclass may override a method from a superclass. If it does, it can still

use the superclass's method by use the keyword super.

// client code
Pet p = new Pet();
System.out.println(p);

Dog d = new Dog("dan");
System.out.println(d);

public class Pet {
private int age;

public Pet() {

age = 3;
}

public String toString(){

return age +
" years old";

}
}

public class Dog extends Pet {
private String name;

public Dog(String n) {

super(); // optional
name = n;

}

public String toString(){
String z = super.toString();
return name + " is " + z;

}
}

Why bother with inheritance?

• Inheritance supports and encourages code reuse. Programmers don't always write entirely
new classes; frequently they build on existing classes.

• The built-in Java classes make extensive use of inheritance.

Page 4 	

The equals Method, Casting and the instanceof Operator

The equals method in the Object class has the following header:

public boolean equals(Object obj)

1. The person designing a class decides what it means for two objects to be equal or not. It may
be that all their instance variables must be equal or just some.

2. The operator can be used to test if a variable contains a
reference to an object of a specified type.

3. In the statement:

Card c = (Card) x;

We are assuring the compiler that it is ok to treat the contents of x as a reference to a Card object
(and not just a reference to an Object). We are not actually changing the contents of x.

To repeat:
1. To override the equals method in the Object class, the new equals methods must have the
same header as the method in the superclass.
2. Therefore the parameter must be of type .
3. However, within the equals method we will want to compare instance variables. The
compiler will not let us call the instance variables of the class if the parameter
is of type Object.
4. Therefore we must the variable x to the Card class before calling the
instance variables.

// client code

Card c1 = new Card(3, 7);
Card c2 = new Card(3, 7);
Card c3 = new Card(2, 11);
String s = "ok";

System.out.println(c1.equals(c2));
System.out.println(c1.equals(c3));
System.out.println(c1.equals(s));

// the above runs and prints:

public class Card {
private int suit; // suit = 1, 2, 3, or 4
private int value; // value = 1 to 13

public Card(int s, int v) {
suit = s;
value = v;

}

public boolean equals(Object x){
if (x instanceof Card == false)

return false;

Card c = (Card) x;
if (value == c.value && suit == c.suit)

return true;
else

return false;
}

}

Page 5 	

In general, if an object variable is of type X then you may assign it a reference to an object of
type X or a reference to an object that is a subclass of X. For example:
public class Fish{

public void m1(){
System.out.println("A");

}
public void m2(){

System.out.println("B");
}

}

public class Tuna extends Fish{
public void m1(){

System.out.println("C");
}
public void m3(){

System.out.println("D");
}

}

Code Compile Time Run Time
Fish f = new Tuna(); 	 	

f.m1(); 	 	

f.m2(); 	 	

f.m3(); 	 	

Tuna x = (Tuna) f;

x.m3();

OR

((Tuna) f).m3();

	 	

Tuna t = new Fish();

Tuna t = new Tuna();

Fish f = new Fish();

Note. Calling a method has higher precedence than casting. Consider the following two code
snippets

On the left,

On the right,

BB b = (BB) a.method(); BB b = ((BB) a).method();

Page 6 	

Why do something like: Fish f = new Tuna();

1) You may need to override a method from a superclass such as the equals method. In this case
you will often pass an argument that contains a reference to a subclass.
Student g = new Student(13);
Student h = new Student(13);
boolean b = g.equals(h);

In the last line the argument to the equals
method is h, of type Student. We are
assigning it to a parameter of type Object,
which is the superclass of Student.

Note. If you try to cast something to the
wrong type, you may get a compiler error or
you may get a runtime error. But you won’t
get away with it.

public class Student{
private int id;

public Student(int i){
id = i;

}

public boolean equals(Object x){
if (x instanceof Student) {

if (id == ((Student) x).id)
return true;

}
return false;

}
}

2) You may need an array of objects from the superclass and the subclass.
public class Coin{

private int value;

public Coin(int v){
value = v;

}

public int getValue(){
return value;

}
}

public class MagicCoin extends Coin {
private boolean lucky;

public MagicCoin(int v){
super(v);
lucky = Math.random() < 0.5;
System.out.println(lucky);

}

public boolean lucky(){
return lucky;

}
}

In this example, the array elements
are of type Coin but may actually
contain references to MagicCoin
objects as well.

public class Runner {
public static void main(String[] args) {

Coin [] c = new Coin[10];
for (int n=0; n<10; n++)

c[n] = get();

// other code
}
private static Coin get(){

int v = (int)(10*Math.random())+1;
if (Math.random() < 0.5)

return new Coin(v);
else

return new MagicCoin(v);
}

}

Page 7 	

Here’s another example because this topic tends to confuse people.
public class Mammal {

public Mammal() {
System.out.println("M");

}

public void speak(){
String s = toString();
System.out.println("I'm a " + s);

}

public String toString(){
return "mammal";

}
}

public class Dolphin extends Mammal {
public Dolphin() {

System.out.println("D");
}

public void swim(){
String s = toString();
System.out.println(s + " swimming");

}

public String toString(){
return "dolphin";

}
}

The above classes are fine. The code below compiles and runs except for 2 of the 4 last
statements. The blank lines are what is printed out by each statement.

public class Runner {

public static void main(String[] args) {
Mammal m = new Mammal();

Dolphin d = new Dolphin();

Mammal md = new Dolphin();

System.out.println(m);

System.out.println(d);

System.out.println(md);

doThis(m);

doThis(d);

doThis(md);

m.swim();

d.swim();

md.swim();

((Dolphin) md).swim();

}

public static void doThis(Mammal x){
x.speak();

}
}

2 of these
4 lines
cause
compiler
errors.

Page 8 	

What does it all mean?

(1) If a variable is of type Mammal, you can store a reference to any object that “is a”
Mammal. For example:

Mammal md = new Dolphin(); // ok

Dolphin flipper = new Mammal(); // NOT OK

(2) If a method is expecting a Mammal object, the argument can be any object that “is a”
Mammal. For example, the doThis method expects a Mammal object which includes any objects
of the subclasses of the Mammal class.

public static void doThis(Mammal x){

(3) If a variable is of type Mammal, then you can only call methods of the Mammal class

Mammal md = new Dolphin();
md.speak(); // ok
md.swin(); // NOT OK

You may cast the variable to a Dolphin object if you need to call a Dolphin method that is

not part of the Mammal class.
((Dolphin)md).swim();

(4) If a method is overridden, you run the method of the actual object’s class (not the class of
the variable).

Planet e = new Earth(); // ok because Earth “is a” Planet (I made it a subclass of Planet)
e.m(); // For this to compile, the Planet class must have a m method

// If the Earth class overrides the m method, then we run the Earth’s m
// Otherwise we run the m method from the Planet class.

Page 9 	

Abstract Classes. A big benefit of inheritance is that it allows you to consolidate common
code into one class and then extend that class to handle more specific situations.

However, there are some situations where

1. you want to ensure that no objects of that super class are instantiated and/or

2. you do want require every subclass to override a particular method or methods.

In this situation you will create an abstract class by using the keyword .

For example. Imagine you are writing a game where different objects exist in a grid. All objects
have x and y coordinates and all objects move but different objects move in different ways. You
could write a class like this:
	 public abstract class Piece{

private int x, y;

public Piece(int x, int y){
this.x = x;
this.y = y;

}

public abstract void move(int dx, int dy);

public int getX(){
return x;

}

// other non-abstract getters and setter
}

	 public class Queen extends Piece{
public Queen(int x, int y){

super(x, y);
}

public void move(int dx, int dy){

// code
}

}
	 Piece p = new Piece(7, 8);

	 Queen q = new Queen(7, 8);
q.move(5, 6);

	 Piece p = new Queen(7, 8);
p.move(5, 6);

	

