
Page 1 	

AP CS Unit 7: Interfaces Notes
The purpose of an interface is to specify what an object should be able to do

 . In other words, an interface is a list of

public methods without any implementing code. Any class that implements that interface must

implement all the methods of the interface.

Let’s look at an example. Suppose we have a program with the following classes: Person, Lion,
Gold, and Food. All of these objects have something in common: a location defined by x and y
locations. Rather than write a superclass, we could write the following interface:

import java.awt.Point;

public interface Locatable{
public Point getLocation();
public void setLocation(Point p);
public double getDistance(Locatable thing);

}
The idea is that any class that implements this interface must be something that has a location
that can be defined by two coordinates and that their location can change.

Here’s what the Lion class might look like

import java.awt.Point;

public class Lion implements Locatable{
private int x, y;
// other instance variables

// constructor(s) and other methods

public Point getLocation(){
return new Point(x, y);

}

public void setLocation(Point p){
x = p.x;
y = p.y;

}

public double getDistance(Locatable loc){
Point here = getLocation();
Point there = loc.getLocation();
return here.distance(there);

}
}

The keyword implements signals that this class
must have all the methods of this interface.

The implementing class can have whatever
instance variables it needs. It can have any
additional methods/constructors it needs.

The method headers must be the
same as those specified in the
interface though the parameter
names may vary.

Page 2 	

To continue with this example, if the Person, Lion, Gold, and Food classes all implement
Locatable then we can do things like this:

Locatable [] locs = new Locatable[4];
locs[0] = new Lion();
locs[1] = new Person();
locs[2] = new Gold();
locs[3] = new Food();

Or write a method like this:

public Point midpoint(Locatable loc1, Locatable loc2){

returns the midpoint between these two objects
}

Note.

• A class may implement _

• If a superclass implements an interface then the _

• If a variable’s data type is an interface, you may call the interface methods and the methods

inherited from the

Interfaces, Inheritance, and Data Types

The datatype of a variable can be an abstract class, concrete class, or interface. However, we can
only make instances of concrete classes.

ABC x = new XYZ();

In other words,

• If ABC is an abstract class, then XYZ must be

• If ABC is an interface, then XYZ must be

• IF ABC is a concrete class, then XYZ must be

DEF y = new DEF();

DEF cannot be an abstract class or an interface, it must be a concrete class.

You can call any Locatable method
without casting. You must cast to
call any non-Locatable method.

You can pass any
objects that
implement Locatable
to this method.

ABC can be:
- an abstract class
- an interface
- a concrete class

XYZ must be a
concrete class

Page 3 	

The List Interface.

The List interface represents an ordered collection of objects. Each object has a unique position
in the list. The List interface has 25 methods. You are responsible for learning 6 of these
methods. In the table below, let E refer to the name of a class.

Method Description
int size() returns the logical size of the list.
boolean add(E obj) appends obj to end of list; returns true
void add(int index, E obj) inserts obj at position index (0 ≤ index ≤ size)

moves elements at position index and higher to the right (adds 1
to their indices) and adjusts size.

E get(int index) returns the object located at index.
E set(int index, E obj) replaces the element at position index with obj

returns the element formerly at the specified position
E remove(int index) removes element from position index, moving elements at

position index + 1 and higher to the left (subtracts 1 from their
indices) and adjusts size.
returns the element formerly at the specified position

The ArrayList Class.

The ArrayList class implements the List interface. Internally it stores the data in an array and
that’s why it’s called the ArrayList class. Let’s look at an example:

import java.util.*;

public class Runner {
public static void main(String[] args) {

List<String> list = new ArrayList<String>();
list.add("A");
list.add("B");
for (int n = 0; n < list.size(); n++){

System.out.print(list.get(n) + ",");
}

}
}

What’s up with the < >. Generic Types.
Some classes and interfaces allow you to define the type of objects that the class handles. In the
code below, think of List<String> as meaning “a list of strings” and ArrayList<String> as
meaning “an array list of strings.” Classes and interfaces that support this are called generic
types.

List<String> list = new ArrayList<String>();
List<Integer> nums = new ArrayList<Integer>();

Yes, they're imported.

What is displayed?

Page 4 	

2. What is
displayed?

import java.util.*;

public class Runner{
public static void main(String[] args) {

List <Cat> x = new ArrayList<Cat>();
System.out.println(x.size());
x.add(new Cat(7));
x.add(1, new Cat(3));
x.add(1, new Cat(8));

for (Cat c : x)
System.out.println(c.get());

}
}

public class Cat{
private int x;

public Cat(int x){

this.x = x;
}

public int get(){

return x;
}

}

1. What is displayed? import java.util.*;

public class Runner{
public static void main(String[] args) {

List <String> x = new ArrayList<String>();
x.add("red");
x.add("green");
x.set(0, "blue");
x.add(0, "yellow");
x.remove(1);

for (int n = 0; n < x.size(); n++) {
String s = x.get(n);
System.out.println(s);

}
}

}

3. What is
displayed? (There
is a very tricky part
to this).

List<Integer> list = new LinkedList<Integer>();
list.add(5);
list.add(5);
list.add(6);

for (Integer i : list)
System.out.print(i + " ");

System.out.println();

for (int k = 0; k < list.size(); k++){
if (list.get(k) == 5)

list.remove(k);
}

for (Integer i : list)
System.out.print(i + " ");

System.out.println();

