
1

AP CS Unit 4: Classes and Objects

Programs

1. Copy the Coin class and complete the second

constructor. Write a second class, named

CoinRunner, that has a main method and does the

following:

• Create four Coin objects. Give one Coin a

value of 5 and another a value of 3. The other two

Coins should have random values.

• Display the value of the two Coins with random

values.

• Call the getValue method for each object and

display the sum of the values.

public class Coin {

 private int value;

 public Coin(int v){

 value = v;

 }

 public Coin(){

 // assign value a random integer

between 1 and 10

 }

 public int getValue(){

 return value;

 }

}

2. Copy the Bucket class. Make sure it compiles

(but you won’t be able to run it because it does not

have a main method).

Add a second class (named BucketRunner) that

does contain a main method. The main method

should do the following:

 Create 2 Bucket objects that can each hold 10

gallons.

 Add a random amount to each bucket (use

Math.random). The amounts should be decimals

between 5 (inclusive) and 12 (exclusive).

 Display how full each bucket is (e.g. 74% and

81%)

 Empty each bucket.

 Call the percentFull method again for each

object and display the returned values (they

should both be zero).

public class Bucket {

 private double amt;

 private double capacity;

 public Bucket(double c) {

 capacity = c; // gallons

 amt = 0;

 }

 public void emptyBucket() {

 amt = 0;

 }

 public void add (double stuff) {

 amt += stuff;

 if (amt > capacity)

 amt = capacity;

 }

 public double percentFull(){

 return 100.0 * amt / capacity;

 }

}

2

3. Copy the Walker method and complete the walk

method. Make sure it compiles. Add a second class

(named RunWalk) and enter this code:

public class RunWalk {

 public static void main(String[] args) {

 Walker w1 = new Walker();

 w1.walk(5); // moves 1 - 5 (random)

 w1.walk(-4); // should not move

 w1.walk(8); // moves 1 - 8 (random)

 w1.walk(1); // moves 1 foot

 int loc = w1.getX();

 System.out.println("w1 is now at " + loc);

 }

}

Run it and make sure it works.

4. Add a third class that contains a main method. In

this main method create another Walker and keep

calling the walk method (with an argument of 10)

until its x value is 100 or greater. After it reaches

100, display its x value and the number of times the

walk method was called.

public class Walker {

 private int x; // location in feet

 public Walker() {

 x = 0;

 }

 public void walk(int max){

 /* If max is less than one this method

does nothing. If max is positive, then this

method generates a random number

between one and max (inclusive) and

increases x by that amount. */

 }

 public int getX(){

 return x;

 }

}

5. Complete the Star class.

Second, write a runner class that creates

three Star objects and calls their display

methods. Then it calculates and displays the

distance between the three stars. If the stars

create an isosceles or equilateral triangle, it

displays a message to that effect (though

this is extremely unlikely to actually

happen). If they do not form an isosceles or

equilateral triangle, then the program

determines and displays which two stars are

closest to each other. Here’s a sample

output:

Star 1 coordinates: 15, 20, 18

Star 2 coordinates: 7, 14, 15

Star 3 coordinates: 14, 18, 20

The distance from star 1 to star 2 is

10.44030650891055

The distance from star 2 to star 3 is

9.486832980505138

The distance from star 3 to star 1 is 3.0

Star 3 and Star 1 are the closest

public class Star{

 private int x, y, z;

 public Star(){

 assign the instance variables random values

between 0 and 20

 }

 public double distance(int x1, int y1, int z1){

 return the distance from (x, y, z)

 to (x1, y1, z1)

}

 public void display(){

 System.out.println(

 "coordinates: " + x + ", " + y + ", " + z);

 }

 Add three accessor methods to the Star class.

}

3

6. Complete the removeDups method in the

ProblemX class. Then write a runner class and paste

this code in the main method to test your solution.

ProblemX p1 = new ProblemX("Eels");

String s = p1.removeDups();

System.out.println(s); // els

s = p1.toString();

System.out.println(s); // eels

ProblemX p2 = new ProblemX("AaAaAaAh!!!");

s = p2.removeDups();

System.out.println(s); // ah!

s = p2.toString();

System.out.println(s); // aaaaaaah!!!

ProblemX p3 = new ProblemX("");

s = p3.removeDups();

System.out.println(s); // empty string

ProblemX p4 = new ProblemX("12221122334231");

s = p4.removeDups();

System.out.println(s); // 121234231

s = p4.toString();

System.out.println(s); // 12221122334231

public class ProblemX{

 private String str;

 public ProblemX(String s){

 str = s.toLowerCase();

 }

 public String removeDups(){

 Returns a string where any

duplicate adjacent characters have

been removed. The instance variable is

not changed.

 }

 public String toString(){

 return str;

 }

}

7. Complete the addCommas method in the StrNumber

class. Then write a runner class and paste this code in the

main method to test your solution.

StrNumber sn1 = new StrNumber("7");

System.out.println(sn1.addCommas()); // 7

StrNumber sn2 = new StrNumber("23");

System.out.println(sn2.addCommas()); // 23

StrNumber sn3 = new StrNumber("405");

System.out.println(sn3.addCommas()); // 405

StrNumber sn4 = new StrNumber("6183");

System.out.println(sn4.addCommas()); // 6,183

StrNumber sn5 = new StrNumber("12345678");

System.out.println(sn5.addCommas()); // 12,345,678

StrNumber sn6 = new StrNumber("71399372947382");

System.out.println(sn6.addCommas());

 // 71,399,372,947,382

StrNumber sn7 = new

 StrNumber("commas are important");

System.out.println(sn7.addCommas());

 // co,mma,s a,re ,imp,ort,ant

public class StrNumber{

 private String nums;

 public StrNumber(String s){

 nums = s;

 }

 public String addCommas(){

 Returns a string that has a

comma placed after every third

character starting from the end of

the string. The returned string

will never start with a comma.

Check the test code for examples

on what it should return.

 }

}

4

8. Review the comments below and then

complete the isPalindrome method in the Pal

class.

Write a runner class and paste this code in the

main method to test your solution.

Pal p1 = new Pal("radar");

System.out.println(p1.toString());

System.out.println(p1.isPalindrome());

Pal p2 = new Pal("radars");

System.out.println(p2.toString());

System.out.println(p2.isPalindrome());

Pal p3 = new Pal("Amore, Roma");

System.out.println(p3.toString());

System.out.println(p3.isPalindrome());

Pal p4 = new Pal("race car?");

System.out.println(p4.toString());

System.out.println(p4.isPalindrome());

It should display:

original: radar, clean: RADAR

true

original: radars, clean: RADARS

false

original: Amore, Roma, clean:

AMOREROMA

true

original: race car?, clean: RACECAR

true

public class Pal{

 private String orig;

 private String clean;

 public Pal(String s){

 orig = s;

 clean = "";

 s = s.toUpperCase();

 for (int k = 0; k < s.length(); k++) {

 char ch = s.charAt(k);

 if (ch >= 65 && ch <= 90)

 clean = clean + ch;

 }

 }

 public boolean isPalindrome(){

 Returns true if this is a palindrome;

otherwise it returns false

 }

 public String toString(){

 return "original: " + orig +

 ", clean: " + clean;

 }

}

Comments.

 Read the opening paragraph of this Wikipedia article on Palindromes.

http://en.wikipedia.org/wiki/Palindrome

 Without going into detail, the letter A is represented by the number 65, B is represented

by 66 and so on. Lower-case letters start at 97 and go up to 122. The primitive data type

char can store exactly one character. Java allows you to compare two chars by using >

and <. The compiler will NOT allow you to compare two strings using > and/or <.

 You will not be tested on the char data type but it is useful and you should be able to

figure out what is going on in the Pal constructor.

http://en.wikipedia.org/wiki/Palindrome

