
Page 1

AP CS A
Unit 2. Using Objects. Notes

Classes and Objects. A class is generally used to serve as a blueprint to create objects. An

object typically contains variables and has methods that allow it to do something.

 Scanner x = new Scanner(System.in);

 System.out.println("Enter a number ");

 int num = x.nextInt();

Once the object is created (aka ______________________________), you can use its methods. To call a
method you need to know:

• Its name.

• What parameters, if any, it has. These are the inputs to a method.

• What the method returns (aka its return type)

Let’s look at some methods of the Scanner class.

Return Type Scanner method name Parameters

 nextInt

Consider the following code:
 Dog fido = new Dog("Timmy"); // calls a Dog constructor
 int a = fido.fetch(14.8); // calls a method
 double b = fido.good(true, 100); // calls a different method

Return Type Dog method name Parameters

Do exercises 1 to 10.

Creates an object
variable, x, of type
Scanner.

Calls a constructor of the Scanner class and creates a
Scanner object. The keyword new must be used when
calling a constructor.

nextInt is a method of the Scanner class. It returns the
integer that the user entered.

System.in tells the Scanner to read
information from the keyboard.

Page 2

To help illustrate the concepts of classes, objects, and methods. We will work with a simple rectangle
class that has only a few methods.

A Rectangle object represents a rectangle on a coordinate plane. The sides are parallel to the x and y

axes. The vertices are restricted to integer values. This NOT the same Rectangle class as the one defined
in the Java library of classes.

Here are the constructors of our Rectangle class

Name(parameters) Comments

Rectangle(int x1, int y1, int x2, int y2) (x1, y1) is the lower left-hand corner.

(x2, y2) is the upper right-hand corner.

Rectangle(int width, int height) The lower left-hand corner is at the origin.

width and height are the dimensions of the rectangle

Methods of our Rectangle class

Return Type Name(parameters) Comments

int getX() Returns the x coordinate of the lower left-hand corner

int getY() Returns the y coordinate of the lower left-hand corner

boolean contains(int x, int y) Returns true if (x,y) is a point within the rectangle.

Returns false if it is on the edge or outside the rectangle.

int area() Returns the rectangle’s area

void translate(int dx, int dy) Adds dx to the x coordinate and dy to the y coordinate.

Does not change the rectangle’s size.

double diagonal() Returns the length of the rectangle’s diagonal

____________ means that a method returns nothing.

Rectangle r1 = new Rectangle(5, 6, 7, 8);

Rectangle r2 = new Rectangle(4, 3);

boolean b = r2.contains(1, 2);

System.out.println(b); // _______________

int n = r1.getY();

System.out.println(n); // _______________

r2.translate(0, 1);

int a = r2.area();

System.out.println(a); // _______________

double len = r2.diagonal();

System.out.println(len); // _______________

How many Rectangle objects are instantiated in the above code? __________

Do exercises 11 to 14.

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

Page 3

The String Class. A String object represents a sequence of one or more characters where a

character could be a letter, digit, or punctuation mark. Each character in a string has a unique index

starting at ______________. Anything in quotes is a _____________________________ and is an object

of the String class.

 "jump now"; // the u is at index ________, the n is at index _________

Classes have __________________________________ that are used to create objects.

String a = new String("easy 123"); __

However, the String constructor does not have to be explicitly called, you can do this:

__

The concatenation operator is _______________. It is used to join a string to another string or a

primitive type such a ___.

The addition and concatenation operators have the same level of precedence and are evaluated

__

For example:

String a = "MY";
a = a + a;
System.out.println(a); // ________________________

String b = "40";
b = b + 3;
System.out.println(b); // ________________________

String c = "a" + 3 + 4;
System.out.println(c); // ________________________

String d = 3 + 4 + "a";
System.out.println(d); // ________________________

Note. While you can concatenate a string with an int or double or boolean, you cannot assign these
values to a string.

int a = 23;
int b = 1;
String c = a + b;

int a = 23;
int b = 1;
String c = a + b + "";

The last line

The last line

Page 4

_________________ sequences start with a \ and have a special meaning in Java. You are responsible
for knowing three of these sequences: \", \n, and \\.

Since quotes (") mark the beginning and end of a string, we must use an escape sequence if we want the
include quotes as part of a string.

 String s = "He said \"GOAT\"?";
 System.out.println(s); // __________________________________

If we want a line break to be part of a string, then we must use a different escape sequence.

 String s = "One\nTwo";
 System.out.println(s); // _________________________

Since \ is used to start an escape sequence, if we want to print a \ then we use an escape sequence.

 String s = "\\/";
 System.out.println(s); // _________________________

Do exercises 15 to 24.

String Methods. While the String class has many methods, we only cover a few of them.

The length method returns the number of characters in a string.

 String s = "A cat"; // there is one space between the two words

 int n = s.length(); // ___________________________

The substring method returns a portion of the string. This method is __________________________

which means that there are multiple methods with the same name but

___.

String a = "ABCDEF";

String b = a.substring(1, 3); // Returns the string in the range [1, 3)

System.out.println(b); // _____________

String c = a.substring(4); // Returns the string in the range [4, to the end]

System.out.println(c); // _____________

IMPORTANT. The substring method does NOT ___.
It returns a new string.

Do exercises 25 to 34.

Page 5

The indexOf method searches a string for another string. This method is also overloaded. Here is one
version.

String a = "there were others";

int n = a.indexOf("er"); // return the index of the first occurrence of er

System.out.println(n); // ________________

n = "haystack".indexOf("needle"); // string literals are string objects

System.out.println(n); // returns ___________ if not found

Another version of indexOf has two parameters: the string that is looked for and the index where the
search should start. The search always goes to the right.

String a = "there were others";

int n = a.indexOf("er", 2);

System.out.println(n); // ________________

n = a.indexOf("er", 3);

System.out.println(n); // ________________

n = "bobble".indexOf("bob", 2);

System.out.println(n); // ________________

NOTE. indexOf is case-sensitive.

String a = "Every one";
int k = a.indexOf("e");
System.out.println(k); // ________________

The equals method returns true if two strings are equal; otherwise it returns false. This is case-sensitive.

 String a = "cat";
 String b = "CAT";
 boolean c = a.equals(b);
 System.out.println(c);

The toLowerCase method returns a copy of the string where all the letters are lower-case.

 String a = "The 4 STARS!";
 String b = a.toLowerCase();
 System.out.println(b); // the 4 star!

The toLowerCase method is often used in combination with other methods that are case-sensitive. For
example, we might first convert two strings to lower-case letters before checking if they are equal or
before calling the indexOf method.

Page 6

The compareTo method has one parameter, a string, and returns an integer. The integer is positive if
the string is greater than the parameter, negative if the string is less than the parameter, or zero the
string equals the parameter.

What does it mean for one string to be greater than or less than another string? In the simple case
(which is the only situation we will consider), if two strings are both all lower-case or all upper-case,
then here are the rules:

• Letters that come earlier in alphabet are ____________ than letters that come later.

• If the first two letters in a string are the same, then compare the next two letters, and so on.

• If both strings are identical except one string has additional letters at the end (e.g. “ax” and

“axes” then the shorter string is ____________ than the longer string.

Another way to say this is, words that come earlier in the dictionary are _____________ than words that
come later in the dictionary.

Remember, this assumes that both strings consist of only upper-case letters or only lower-case letters.
We will not use the compareTo method with any kinds of other strings.

1. This prints
a) a negative number then a positive number.
b) a positive number then a negative number.
c) two positive numbers.
d) two negative numbers.

String a = "ADAM";

String b = "BETTY";

int n1 = a.compareTo(b);

System.out.println(n1);

n1 = b.compareTo(a);

System.out.println(n1);

2. This prints
a) a negative number then a positive number.
b) a positive number then a negative number.
c) two positive numbers.
d) two negative numbers.

String a = "milk";

String b = "and cookies";

int n1 = a.compareTo(b);

System.out.println(n1);

n1 = b.compareTo(a);

System.out.println(n1);

3. This prints
a) a negative number then a positive number.
b) a positive number then a negative number.
c) two positive numbers.
d) two negative numbers.

String a = "window";

String b = "win";

int n1 = a.compareTo(b);

System.out.println(n1);

n1 = b.compareTo(a);

System.out.println(n1);

Do exercises 35 to 47.

Page 7

The Math Class. In general, methods are associated with objects because they return information

about the object or do something to the object. For instance, consider the String class’s length method.
It returns the number of characters in a specific String object. You must have a specific String to use its
length method.

However, there are methods that are associated with a class, and not the objects of that class. These

methods are called ___________________ methods. To call them, you refer to their class, not an object.

The Math class has many static methods; here are five that you need to know.

double n = Math.sqrt(16); // returns the ___________________________
n = Math.sqrt(n);
System.out.println(n); // __________________________

Notice how the sqrt method is called. We do NOT create a Math object; we simply use the name of the
class.

The return type of the sqrt method is _________________. If need be, we can cast the returned value to
an int.

int n = (int) Math.sqrt(81);
System.out.println(n); // _________________
n = (int) Math.sqrt(80);
System.out.println(n); // _________________

Note: calling a method has higher precedence than the casting operator. The method is called first and
then the returned value is cast to an int before the value is assigned to n.

**

The abs method returns the absolute value of the parameter.

int d = Math.abs(-7);
System.out.println(d); // _________________
double e = Math.abs(-12.7);
System.out.println(e); // _________________

In the above example, the first time we called the abs method, it returned an int and the second time it

returned a double. It can do that because this method is ___________________________.

If the parameter is an __________________, then it returns an ____________________.

If the parameter is a __________________, then it returns a ____________________.

**

Page 8

The pow method has two parameters, both doubles, and returns a double. It returns the value of the
first parameter raised to the second parameter.

 double num = Math.pow(3, 4); // ________________________

 System.out.println(num); // _________________________

The random method returns a random number in the range [0, 1).

double a = Math.random();
System.out.println(a); // 0.5673112178583647
a = Math.random();
System.out.println(a); // 0.06784309086038653

If you ran this code again, you would get two different numbers. Without getting into details,
Math.random returns pseudorandom decimals: numbers that appear to be random but are actually
based on an algorithm and the time when the code was executed.

While these random decimals can be useful, in many of the programs that you will write, you need to
generate a random integer within some range. Here is a formula to generate a random integer in the
range [min, max] with an equal likelihood of any of the numbers being returned.

 int n = (int) (range * Math.random()) + min; // where range = max – min + 1

For example, to generate a random integer in the range [-1, 3]

 int n = (int) (________ * Math.random()) ___________; // num will be: -1, 0, 1, 2, or 3

1. a is a random integer in the range: [______, ______]

int a = (int)(5 * Math.random()) + 3;

2. b is a random integer in the range: [______, ______]

int b = (int)(12 * Math.random());

3. c is a random integer in the range: [______, ______]

int c = (int)(3 * Math.random()) - 7;

You need to memorize the formula for generating a range of random integers.

Do exercises 48 to the end.

