

GridWorld
AP® Computer Science

Case Study

Student Manual

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect
students to college success and opportunity. Founded in 1900, the association is composed of
more than 5,000 schools, colleges, universities, and other educational organizations. Each year,
the College Board serves seven million students and their parents, 23,000 high schools, and
3,500 colleges through major programs and services in college admissions, guidance, assessment,
financial aid, enrollment, and teaching and learning. Among its best-known programs are the
SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is
committed to the principles of excellence and equity, and that commitment is embodied in all of
its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com.

© 2007 The College Board. All rights reserved. College Board, Advanced Placement Program, AP, AP
Central, SAT, and the acorn logo are registered trademarks of the College Board. connect to college
success is a trademark owned by the College Board. PSAT/NMSQT is a registered trademark of the
College Board and National Merit Scholarship Corporation. All other products and services mentioned
herein may be trademarks of their respective owners. Visit the College Board on the Web:
www.collegeboard.com

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

3

GridWorld Case Study

(2008 AP® CS Exam)

The AP® Program wishes to acknowledge and to thank the following individuals for their
contributions to the GridWorld Case Study.

Narrative by Chris Nevison and Barbara Cloud Wells, Colgate University

Framework design and implementation by Cay Horstmann, San Jose State University

Images created by Chris Renard, a student at the School for the Talented and Gifted,
Dallas Independent School District

Introduction
The GridWorld Case Study provides a graphical environment where visual objects
inhabit and interact in a two-dimensional grid. In this case study, you will design and
create “actor” objects, add them to a grid, and determine whether the actors behave
according to their specifications. A graphical user interface (GUI) is provided that
displays the grid and the actors. In addition, the GUI has a facility for adding actors to the
grid and for invoking methods on them.

This guide for GridWorld is organized into the following parts:

Part 1: Provides experiments to observe the attributes and behavior of the actors.

Part 2: Defines Bug variations.

Part 3: Explores the code that is needed to understand and create actors.

Part 4: Defines classes that extend the Critter class.

Part 5: (CS AB only) Explains grid data structures.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

4

Part 1: Observing and Experimenting with GridWorld

Running the Demo

You need to download and install the case study files. Instructions are provided in a
separate document.

Once the code is installed, simply compile and run the BugRunner.java application
supplied with the case study. The GridWorld GUI will show a grid containing two actors,
a “bug” and a “rock.” Clicking on the Step button runs one step, making each actor act
once. Clicking on the Run button carries out a series of steps until the Stop button is
clicked. The delay between steps during a run can be adjusted with the slider. Try it!

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

5

Clicking on an empty cell in the grid displays a drop-down menu that shows the
constructors for different actor types.

The menu lists constructors for the classes of all objects that have ever been placed in
the grid.

Selecting one of these constructors places an instance of that type in the grid. If the
constructor has parameters, a dialog window appears, requesting parameter values.
For example, after selecting the constructor
info.gridworld.actor.Bug(java.awt.Color), the following dialog
window appears. Clicking in the color bar produces a drop-down menu from which to
choose a color.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

6

What’s Happening?

The grid uses directions as on a map: north is up on the screen, east is to the right, south
is down, west is to the left. The diagonal directions are northeast, southeast, southwest,
and northwest.

One attribute of the bug is its direction (indicated by its antennae). Initially, the bug
faces north.

Make a bug, take several steps and observe its behavior. Then add more rocks and bugs
by clicking on empty cells and selecting the actors of your choice. Answer the following
questions based on your observations using the Step and Run buttons.

Do You Know?
 Set 1

1. Does the bug always move to a new location? Explain.
2. In which direction does the bug move?
3. What does the bug do if it does not move?
4. What does a bug leave behind when it moves?
5. What happens when the bug is at an edge of the grid? (Consider whether the bug

is facing the edge as well as whether the bug is facing some other direction when
answering this question.)

6. What happens when a bug has a rock in the location immediately in front of it?
7. Does a flower move?
8. What behavior does a flower have?
9. Does a rock move or have any other behavior?

10. Can more than one actor (bug, flower, rock) be in the same location in the grid at
the same time?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

7

Exploring Actor State and Behavior

When you click on a cell containing an actor (bug, flower, or rock), a drop-down menu
displays the methods that you can invoke on the actor. The methods that appear above the
separator line are specified by the class that defines this actor; those that appear below the
line are the methods inherited from the Actor class.

Experiment with the different methods to see how they work. Accessor methods will
have their results displayed in a dialog window. Modifier methods will cause an
appropriate change in the display of the actor in the grid. If parameters are needed for a
method, you provide them through a dialog window such as the following.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

8

If you select one of the methods in the menu, it will be invoked for this actor. As an
example, click on a bug to see the menu of methods. Now observe what happens when
you select the void setDirection(int) method. The bug will change its
direction to the angle that you supply. Try selecting some of the other methods. What
about the act method? If you invoked that method, the actor will behave as if you had
clicked on the Step button, but no other actors will do anything. A bug will move forward
or turn to the right, a flower’s color will darken, and a rock will do nothing. The Step
button simply causes the act method to be invoked on all actors in the grid.

Exercises

By clicking on a cell containing a bug, flower, or rock, do the following.

1. Test the setDirection method with the following inputs and complete the
table, giving the compass direction each input represents.

Degrees Compass Direction
 0 North
45
90
135
180
225
270
315
360

2. Move a bug to a different location using the moveTo method. In which
directions can you move it? How far can you move it? What happens if you try to
move the bug outside the grid?

3. Change the color of a bug, a flower, and a rock. Which method did you use?

4. Move a rock on top of a bug and then move the rock again. What happened to
the bug?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

9

GUI Summary

Mouse Action Keyboard Shortcut Result

Click on an empty
location

Select empty location with
cursor keys and press the
Enter key

Shows the constructor menu

Click on an occupied
location

Select occupied location
with cursor keys and press
the Enter key

Shows the method menu

Select the Location ->
Delete menu item Press the Delete key

Removes the occupant in the
currently selected location from
the grid

Click on the Step button Calls act on each actor

Click on the Run button
Starts run mode (in run mode, the
action of the Step button is carried
out repeatedly)

Click on the Stop button Stops run mode
Adjust the Slow/Fast
slider Changes speed of run mode

Select the Location ->
Zoom in/Zoom out
menu item

Press the Ctrl+PgUp /
Ctrl+PgDn keys Zooms grid display in or out

Adjust the scroll bars
next to grid

Move the location with the
cursor keys

Scrolls to other parts of the grid (if
the grid is too large to fit inside
the window)

Select the World -> Set
grid menu item Changes between bounded and

unbounded grids
Select the World ->
Quit menu item Press the Ctrl+Q keys Quits GridWorld

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

10

GridWorld Case Study
Part 2: Bug Variations

Methods of the Bug Class

The Bug class provides three methods that specify how bugs move and turn.

 public boolean canMove()
tests whether the bug can move forward into a location that is empty or contains a
flower

 public void move()
 moves the bug forward, putting a flower into the location it previously occupied

 public void turn()
 turns the bug 45 degrees to the right without changing its location

These methods are used in the bug’s act method.

 public void act()
 {
 if (canMove())
 move();
 else
 turn();
 }

The experiments in the previous section showed that the bug moves forward when it can.
When the bug has a rock in front of it or is facing an edge of the grid, it cannot move, so
it turns. However, it can step on a flower (which removes the flower from the grid).
When the bug moves, it leaves a flower in its previous location. This behavior is
determined by the act method and the three methods that the act method calls.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

11

Extending the Bug Class

A new type of bug with different behavior can be created by extending the Bug class
and overriding the act method. No new methods need to be added; the act method
uses the three auxiliary methods from the Bug class listed above. A BoxBug moves
in a square pattern. In order to keep track of its movement, the BoxBug class has two
instance variables, sideLength and steps.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

12

Do You Know?
 Set 2

The source code for the BoxBug class is in Appendix C.

1. What is the role of the instance variable sideLength?
2. What is the role of the instance variable steps?
3. Why is the turn method called twice when steps becomes equal to

sideLength?
4. Why can the move method be called in the BoxBug class when there is no

move method in the BoxBug code?
5. After a BoxBug is constructed, will the size of its square pattern always be the

same? Why or why not?
6. Can the path a BoxBug travels ever change? Why or why not?
7. When will the value of steps be zero?

Runner Classes

In order to observe the behavior of one or more actors, a “runner” class is required. That
class constructs an ActorWorld object, places actors into it, and shows the world. For
the bug, this class is BugRunner. For the box bug, it is BoxBugRunner. In each
of these runner classes, the overloaded add method is used to place actors (instances of
classes such as Bug, BoxBug, Rock) into the grid of the ActorWorld. The add
method with an Actor parameter and a Location parameter places an actor at a
specified location. The add method with an Actor parameter but no Location
parameter places an actor at a random empty location. When you write your own classes
that extend Bug, you also need to create a similar runner class.

The source code for the BoxBugRunner class is at the end of this part of
GridWorld.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

13

Exercises

In the following exercises, write a new class that extends the Bug class. Override the
act method to define the new behavior.

1. Write a class CircleBug that is identical to BoxBug, except that in the
act method the turn method is called once instead of twice. How is its
behavior different from a BoxBug?

2. Write a class SpiralBug that drops flowers in a spiral pattern. Hint: Imitate
BoxBug, but adjust the side length when the bug turns. You may want to change
the world to an UnboundedGrid to see the spiral pattern more clearly.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

14

3. Write a class ZBug to implement bugs that move in a “Z” pattern, starting in the
top left corner. After completing one “Z” pattern, a ZBug should stop moving.
In any step, if a ZBug can’t move and is still attempting to complete its “Z”
pattern, the ZBug does not move and should not turn to start a new side. Supply
the length of the “Z” as a parameter in the constructor. The following image
shows a “Z” pattern of length 4. Hint: Notice that a ZBug needs to be facing
east before beginning its “Z” pattern.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

15

4. Write a class DancingBug that “dances” by making different turns before
each move. The DancingBug constructor has an integer array as parameter.
The integer entries in the array represent how many times the bug turns before it
moves. For example, an array entry of 5 represents a turn of 225 degrees (recall
one turn is 45 degrees). When a dancing bug acts, it should turn the number of
times given by the current array entry, then act like a Bug. In the next move, it
should use the next entry in the array. After carrying out the last turn in the array,
it should start again with the initial array value so that the dancing bug continually
repeats the same turning pattern.

The DancingBugRunner class should create an array and pass it as a
parameter to the DancingBug constructor.

 5. Study the code for the BoxBugRunner class. Summarize the steps you would
 use to add another BoxBug actor to the grid.

BoxBugRunner.java

import info.gridworld.actor.ActorWorld;
import info.gridworld.grid.Location;

import java.awt.Color;

/**
 * This class runs a world that contains box bugs.
 * This class is not tested on the AP CS A and AB exams.
 */
public class BoxBugRunner
{
 public static void main(String[] args)
 {
 ActorWorld world = new ActorWorld();
 BoxBug alice = new BoxBug(6);
 alice.setColor(Color.ORANGE);
 BoxBug bob = new BoxBug(3);
 world.add(new Location(7, 8), alice);
 world.add(new Location(5, 5), bob);
 world.show();
 }
}

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

16

GridWorld Case Study
Part 3: GridWorld Classes and Interfaces
In our example programs, a grid contains actors that are instances of classes that extend
the Actor class. There are two classes that implement the Grid interface:
BoundedGrid and UnboundedGrid. Locations in a grid are represented by
objects of the Location class. An actor knows the grid in which it is located as well
as its current location in the grid. The relationships among these classes are shown in the
following figure.

The Location Class

Every actor that appears has a location in the grid. The Location class encapsulates
the coordinates for an actor’s position in a grid. It also provides methods that determine
relationships between locations and compass directions.

Every actor in the grid also has a direction. Directions are represented by compass
directions measured in degrees: 0 degrees is north, 45 degrees is northeast, 90 degrees
is east, etc. The Location class provides eight constants that specify the compass
directions.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

17

public static final int NORTH = 0;
public static final int EAST = 90;
public static final int SOUTH = 180;
public static final int WEST = 270;
public static final int NORTHEAST = 45;
public static final int SOUTHEAST = 135;
public static final int SOUTHWEST = 225;
public static final int NORTHWEST = 315;

In addition, the Location class specifies constants for commonly used turn angles.
For example, Location.HALF_RIGHT denotes a turn by 45 degrees. Here are the
constants for the turn angles.

public static final int LEFT = -90;
public static final int RIGHT = 90;
public static final int HALF_LEFT = -45;
public static final int HALF_RIGHT = 45;
public static final int FULL_CIRCLE = 360;
public static final int HALF_CIRCLE = 180;
public static final int AHEAD = 0;

To make an actor turn by a given angle, set its direction to the sum of the current
direction and the turn angle. For example, the turn method of the Bug class makes
this call.

setDirection(getDirection() + Location.HALF_RIGHT);

A location in a grid has a row and a column. These values are parameters of the
Location constructor.

public Location(int r, int c)

Two accessor methods are provided to return the row and column for a location.

public int getRow()
public int getCol()

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

18

Two other Location methods give information about the relationships between
locations and directions.

 public Location getAdjacentLocation(int direction)
 returns the adjacent location in the compass direction that is closest to

direction

 public int getDirectionToward(Location target)
 returns the closest compass direction from this location toward target

For example, assume you have the statement below.

Location loc1 = new Location(5, 7);

The following statements will result in the values indicated by the comments.

Location loc2 = loc1.getAdjacentLocation(Location.WEST);
// loc2 has row 5, column 6

Location loc3 = loc1.getAdjacentLocation(Location.NORTHEAST);
// loc3 has row 4, column 8

int dir = loc1.getDirectionToward(new Location(6, 8));
// dir has value 135 (degrees)

Note that the row values increase as you go south (down the screen) and the column
values increase as you go east (to the right on the screen).

The Location class defines the equals method so that loc.equals(other)
returns true if other is a Location object with the same row and column
values as loc and returns false otherwise.

The Location class implements the Comparable interface. The compareTo
method compares two Location objects. The method call
loc.compareTo(other) returns a negative integer if loc has a smaller row
coordinate than other, or if they have the same row and loc has a smaller column
coordinate than other. The call returns 0 if loc and other have the same row
and column values. Otherwise, the call returns a positive integer.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

19

Do You Know?
 Set 3

The API for the Location class is in Appendix B.

Assume the following statements when answering the following questions.

Location loc1 = new Location(4, 3);
Location loc2 = new Location(3, 4);

1. How would you access the row value for loc1?
2. What is the value of b after the following statement is executed?

boolean b = loc1.equals(loc2);

3. What is the value of loc3 after the following statement is executed?

Location loc3 = loc2.getAdjacentLocation(Location.SOUTH);

4. What is the value of dir after the following statement is executed?

int dir = loc1.getDirectionToward(new Location(6, 5));

5. How does the getAdjacentLocation method know which adjacent
location to return?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

20

The Grid Interface

The interface Grid<E> specifies the methods for any grid that contains objects of the
type E. Two classes, BoundedGrid<E> and UnboundedGrid<E> implement
the interface.

You can check whether a given location is within a grid with this method.

boolean isValid(Location loc)
returns true if loc is valid in this grid, false otherwise
Precondition: loc is not null

All methods in this case study have the implied precondition that their
parameters are not null. The precondition is emphasized in this method to
eliminate any doubt whether null is a valid or invalid location. The null
reference does not refer to any location, and you must not pass null to the
isValid method.

The following three methods allow us to put objects into a grid, remove objects from a
grid, and get a reference to an object in a grid.

 E put(Location loc, E obj)
puts obj at location loc in this grid and returns the object previously at that
location (or null if the location was previously unoccupied)
Precondition: (1) loc is valid in this grid (2) obj is not null

 E remove(Location loc)
removes the object at location loc and returns it (or null if the location is
unoccupied)
Precondition: loc is valid in this grid

 E get(Location loc)
returns the object at location loc (or null if the location is unoccupied)
Precondition: loc is valid in this grid

An additional method returns all occupied locations in a grid.

ArrayList<Location> getOccupiedLocations()

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

21

Four methods are used to collect adjacent locations or neighbor elements of a given
location in a grid. The use of these methods is demonstrated by the examples in Part 4.

 ArrayList<Location> getValidAdjacentLocations(Location loc)
returns all valid locations adjacent to loc in this grid
Precondition: loc is valid in this grid

 ArrayList<Location> getEmptyAdjacentLocations(Location loc)
returns all valid empty locations adjacent to loc in this grid
Precondition: loc is valid in this grid

 ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
returns all valid occupied locations adjacent to loc in this grid
Precondition: loc is valid in this grid

 ArrayList<E> getNeighbors(Location loc)
returns all objects in the occupied locations adjacent to loc in this grid
Precondition: loc is valid in this grid

Finally, you can get the number of rows and columns of a grid.

int getNumRows();
int getNumCols();

For unbounded grids, these methods return -1.

Do You Know?
 Set 4

The API for the Grid interface is in Appendix B.

1. How can you obtain a count of the objects in a grid? How can you obtain a count
of the empty locations in a bounded grid?

2. How can you check if location (10,10) is in a grid?
3. Grid contains method declarations, but no code is supplied in the methods.

Why? Where can you find the implementations of these methods?
4. All methods that return multiple objects return them in an ArrayList. Do you

think it would be a better design to return the objects in an array? Explain your
answer.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

22

The Actor Class

The following accessor methods of the Actor class provide information about the state
of the actor.

public Color getColor()
public int getDirection()
public Grid<Actor> getGrid()
public Location getLocation()

One method enables an actor to add itself to a grid; another enables the actor to remove
itself from the grid.

public void putSelfInGrid(Grid<Actor> gr, Location loc)
public void removeSelfFromGrid()

The putSelfInGrid method establishes the actor’s location as well as the grid in
which it is placed. The removeSelfFromGrid method removes the actor from its
grid and makes the actor’s grid and location both null.

When adding or removing actors, do not use the put and remove
methods of the Grid interface. Those methods do not update the location and
grid instance variables of the actor. That is a problem since most actors behave
incorrectly if they do not know their location. To ensure correct actor behavior,
always use the putSelfInGrid and removeSelfFromGrid methods of the
Actor class.

To move an actor to a different location, use the following method.

public void moveTo(Location loc)

The moveTo method allows the actor to move to any valid location. If the actor calls
moveTo for a location that contains another actor, the other one removes itself from the
grid and this actor moves into that location.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

23

You can change the direction or color of an actor with the methods below.

public void setColor(Color newColor)
public void setDirection(int newDirection)

These Actor methods provide the tools to implement behavior for an actor. Any class
that extends Actor defines its behavior by overriding the act method.

public void act()

The act method of the Actor class reverses the direction of the actor. You override
this method in subclasses of Actor to define actors with different behavior. If you
extend Actor without specifying an act method in the subclass, or if you add an
Actor object to the grid, you can observe that the actor flips back and forth with every
step.

The Bug, Flower, and Rock classes provide examples of overriding the act
method.

The API for the Grid interface and the Location and Actor classes is provided
in Appendix B. The following questions help analyze the code for Actor.

Do You Know?
 Set 5

The API for the Actor class is in Appendix B.

1. Name three properties of every actor.
2. When an actor is constructed, what is its direction and color?
3. Why do you think that the Actor class was created as a class instead of an

interface?
4. Can an actor put itself into a grid twice without first removing itself? Can an actor

remove itself from a grid twice? Can an actor be placed into a grid, remove itself,
and then put itself back? Try it out. What happens?

5. How can an actor turn 90 degrees to the right?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

24

Extending the Actor Class

The Bug, Flower, and Rock classes extend Actor in different ways. Their
behavior is specified by how they override the act method.

The Rock Class

A rock acts by doing nothing at all. The act method of the Rock class has an empty
body.

The Flower Class

A flower acts by darkening its color, without moving. The act method of the
Flower class reduces the values of the red, green, and blue components of the color by
a constant factor.

The Bug Class

A bug acts by moving forward and leaving behind a flower. A bug cannot move into a
location occupied by a rock, but it can move into a location that is occupied by a flower,
which is then removed. If a bug cannot move forward because the location in front is
occupied by a rock or is out of the grid, then it turns right 45 degrees.

In Part 2, exercises were given to extend the Bug class. All of the exercises required the
act method of the Bug class to be overridden to implement the desired behavior. The
act method uses the three auxiliary methods in the Bug class: canMove, move,
and turn. These auxiliary methods call methods from Actor, the superclass.

The canMove method determines whether it is possible for this Bug to move. It uses
a Java operator called instanceof (not part of the AP CS Java subset). This operator
is used as in the following way.

expr instanceof Name

Here, expr is an expression whose value is an object and Name is the name of a
class or interface type. The instanceof operator returns true if the object has the
specified type. If Name is a class name, then the object must be an instance of that class
itself or one of its subclasses. If Name is an interface name, then the object must belong
to a class that implements the interface.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

25

This statement in the canMove method checks whether the object in the adjacent
location is null or if it is a Flower.

return (neighbor == null) || (neighbor instanceof Flower);

The following statement in the canMove method checks that the bug is actually in a
grid—it would be possible for the bug not to be in a grid if some other actor removed it.

if (gr == null) return false;

The other code for canMove is explored in the questions at the end of this section.

The move method for Bug moves it to the location immediately in front and puts a
flower in its previous location. The turn method for Bug turns it 45 degrees to the
right. The code for these methods is explored in the following questions.

Do You Know?
 Set 6

The source code for the Bug class is in Appendix C.

1. Which statement(s) in the canMove method ensures that a bug does not try to
move out of its grid?

2. Which statement(s) in the canMove method determines that a bug will not
walk into a rock?

3. Which methods of the Grid interface are invoked by the canMove method
and why?

4. Which method of the Location class is invoked by the canMove method
and why?

5. Which methods inherited from the Actor class are invoked in the canMove
method?

6. What happens in the move method when the location immediately in front of
the bug is out of the grid?

7. Is the variable loc needed in the move method, or could it be avoided by
calling getLocation() multiple times?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

26

8. Why do you think the flowers that are dropped by a bug have the same color as
the bug?

9. When a bug removes itself from the grid, will it place a flower into its previous
location?

10. Which statement(s) in the move method places the flower into the grid at the
bug’s previous location?

11. If a bug needs to turn 180 degrees, how many times should it call the turn
method?

Group Activity

Organize groups of 3–5 students.

1. Specify: Each group creates a class called Jumper. This actor can move
forward two cells in each move. It “jumps” over rocks and flowers. It does not
leave anything behind it when it jumps.

In the small groups, discuss and clarify the details of the problem:

a. What will a jumper do if the location in front of it is empty, but the
location two cells in front contains a flower or a rock?

b. What will a jumper do if the location two cells in front of the jumper is
out of the grid?

c. What will a jumper do if it is facing an edge of the grid?
d. What will a jumper do if another actor (not a flower or a rock) is in the

cell that is two cells in front of the jumper?
e. What will a jumper do if it encounters another jumper in its path?
f. Are there any other tests the jumper needs to make?

2. Design: Groups address important design decisions to solve the problem:
a. Which class should Jumper extend?
b. Is there an existing class that is similar to the Jumper class?
c. Should there be a constructor? If yes, what parameters should be specified

for the constructor?
d. Which methods should be overridden?
e. What methods, if any, should be added?
f. What is the plan for testing the class?

3. Code: Implement the Jumper and JumperRunner classes.
4. Test: Carry out the test plan to verify that the Jumper class meets the

specification.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

27

What Makes It Run? (Optional)

A graphical user interface (GUI) has been provided for running GridWorld programs.
The World class makes the connection between the GUI and the classes already
described. The GUI asks the world for its grid, locates the grid occupants, and draws
them. The GUI allows the user to invoke the step method of the world, either taking
one step at a time or running continuously. After each step, the GUI redisplays the grid.

For our actors, a subclass of the World class called ActorWorld is provided.
ActorWorld defines a step method that invokes act on each actor.

The World and ActorWorld classes are not tested in the AP CS Exam.

Other worlds can be defined that contain occupants other than actors. By providing
different implementations of the step method and other methods of the World
class, one can produce simulations, games, and so on. This is not tested on the AP CS
Exam.

In order to display the GUI, a runner program constructs a world, adds occupants to it,
and invokes the show method on the world. That method causes the GUI to launch.

The ActorWorld class has a constructor with a Grid<Actor> parameter. Use
that constructor to explore worlds with grids other than the default 10 x 10 grid.

The ActorWorld has two methods for adding an actor.

public void add(Location loc, Actor occupant)
public void add(Actor occupant)

The add method without a Location parameter adds an actor at a random empty
location.

When adding actors to a world, be sure to use the add method of the ActorWorld
class and not the put method of the Grid interface. The add method calls the
Actor method putSelfInGrid. As explained previously, the putSelfInGrid
method sets the actor’s references to its grid and location and calls the grid method put,
giving the grid a reference to the actor.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

28

The remove method removes an actor from a given location and returns the Actor
that has been removed.

public Actor remove(Location loc)

The relationship between the GUI, world, and actor classes is shown in the following
figure. Note that the GUI has no knowledge of actors. It can show occupants in any
world. Conversely, actors have no knowledge of the GUI.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

29

GridWorld Case Study
Part 4: Interacting Objects

The Critter Class

Critters are actors that share a common pattern of behavior, but the details may vary for
each type of critter. When a critter acts, it first gets a list of actors to process. It processes
those actors and then generates the set of locations to which it may move, selects one, and
moves to that location.

Different types of critters may select move locations in different ways, may have
different ways of selecting among them, and may vary the actions they take when they
make the move. For example, one type of critter might get all the neighboring actors and
process each one of them in some way (change their color, make them move, and so on).
Another type of critter may get only the actors to its front, front-right, and front-left and
randomly select one of them to eat. A simple critter may get all the empty neighboring
locations, select one at random, and move there. A more complex critter may only move
to the location in front or behind and make a turn if neither of these locations is empty.

Each of these behaviors fits a general pattern. This general pattern is defined in the act
method for the Critter class, a subclass of Actor. This act method invokes
the following five methods.

ArrayList<Actor> getActors()
void processActors(ArrayList<Actor> actors)
ArrayList<Location> getMoveLocations()
Location selectMoveLocation(ArrayList<Location> locs)
void makeMove(Location loc)

These methods are implemented in the Critter class with simple default behavior—
see the following section. Subclasses of Critter should override one or more of
these methods.

It is usually not a good idea to override the act method in a Critter subclass. The
Critter class was designed to represent actors that process other actors and then
move. If you find the act method unsuitable for your actors, you should consider
extending Actor, not Critter.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

30

Do You Know?
 Set 7

The source code for the Critter class is in Appendix C.

1. What methods are implemented in Critter?
2. What are the five basic actions common to all critters when they act?
3. Should subclasses of Critter override the getActors method? Explain.
4. Describe three ways that a critter could process actors.
5. What three methods must be invoked to make a critter move? Explain each of

these methods.
6. Why is there no Critter constructor?

Default Critter Behavior

Before moving, critters process other actors in some way. They can examine them, move
them, or even eat them.

There are two steps involved:

1. Determination of which actors should be processed
2. Determination of how they should be processed

The getActors method of the Critter class gets a list of all neighboring actors.
This behavior can be inherited in subclasses of Critter. Alternatively, a subclass
can decide to process a different set of actors, by overriding the getActors method.

The processActors method in the Critter class eats (that is, removes) actors
that are not rocks or critters. This behavior is either inherited or overridden in subclasses.

When the critter has completed processing actors, it moves to a new location. This is a
three-step process.

1. Determination of which locations are candidates for the move
2. Selection of one of the candidates
3. Making the move

Each of these steps is implemented in a separate method. This allows subclasses to
change each behavior separately.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

31

The Critter implementation of the getMoveLocations method returns all
empty adjacent locations. In a subclass, you may want to compute a different set of
locations. One of the examples in the case study is a CrabCritter that can only
move sideways.

Once the candidate locations have been determined, the critter needs to select one of
them. The Critter implementation of selectMoveLocation selects a location
at random. However, other critters may want to work harder and pick the location they
consider best, such as the one with the most food or the one closest to their friends.

Finally, when a location has been selected, it is passed to the makeMove method. The
makeMove method of the Critter class simply calls moveTo, but you may want
to override the makeMove method to make your critters turn, drop a trail of rocks, or
take other actions.

Note that there are postconditions on the five Critter methods called by
act. When you override these methods, you should maintain these postconditions.

 The design philosophy behind the Critter class is that the behavior is carried out

in separate phases, each of which can be overridden independently. The
postconditions help to ensure that subclasses implement behavior that is consistent
with the purpose of each phase.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

32

Extending the Critter Class

The ChameleonCritter class defines a new type of critter that gets the same
neighboring actors as a Critter. However, unlike a Critter, a
ChameleonCritter doesn’t process actors by eating them. Instead, when a
ChameleonCritter processes actors, it randomly selects one and changes its own
color to the color of the selected actor.

The ChameleonCritter class also overrides the makeMove method of the
Critter class. When a ChameleonCritter moves, it turns toward the new
location.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

33

The following figure shows the relationships among Actor, Critter, and
ChameleonCritter, as well as the CrabCritter class that is discussed in the
following section.

 Do You Know?
 Set 8

The source code for the ChameleonCritter class is in Appendix C.

1. Why does act cause a ChameleonCritter to act differently from a
Critter even though ChameleonCritter does not override act?

2. Why does the makeMove method of ChameleonCritter call
super.makeMove?

3. How would you make the ChameleonCritter drop flowers in its old
location when it moves?

4. Why doesn’t ChameleonCritter override the getActors method?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

34

5. Which class contains the getLocation method?
6. How can a Critter access its own grid?

Another Critter

A CrabCritter is a critter that eats whatever is found in the locations immediately
in front, to the right-front, or to the left-front of it. It will not eat a rock or another critter
(this restriction is inherited from the Critter class). A CrabCritter can move
only to the right or to the left. If both locations are empty, it randomly selects one. If a
CrabCritter cannot move, then it turns 90 degrees, randomly to the left or right.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

35

 Do You Know?
 Set 9

The source code for the CrabCritter class is reproduced at the end of this part of
GridWorld. This code is not required for the AP CS Exam, but working with the code is
good practice as preparation for the exam.

1. Why doesn’t CrabCritter override the processActors method?
2. Describe the process a CrabCritter uses to find and eat other actors. Does it

always eat all neighboring actors? Explain.
3. Why is the getLocationsInDirections method used in

CrabCritter?
4. If a CrabCritter has location (3, 4) and faces south, what are the possible

locations for actors that are returned by a call to the getActors method?
5. What are the similarities and differences between the movements of a

CrabCritter and a Critter?
6. How does a CrabCritter determine when it turns instead of moving?
7. Why don’t the CrabCritter objects eat each other?

Exercises

1. Modify the processActors method in ChameleonCritter so that if
the list of actors to process is empty, the color of the ChameleonCritter
will darken (like a flower).

In the following exercises, your first step should be to decide which of
the five methods—getActors, processActors,
getMoveLocations, selectMoveLocation, and makeMove—
should be changed to get the desired result.

2. Create a class called ChameleonKid that extends ChameleonCritter as
modified in exercise 1. A ChameleonKid changes its color to the color of one
of the actors immediately in front or behind. If there is no actor in either of these
locations, then the ChameleonKid darkens like the modified
ChameleonCritter.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

36

3. Create a class called RockHound that extends Critter. A RockHound
gets the actors to be processed in the same way as a Critter. It removes any
rocks in that list from the grid. A RockHound moves like a Critter.

4. Create a class BlusterCritter that extends Critter. A
BlusterCritter looks at all of the neighbors within two steps of its current
location. (For a BlusterCritter not near an edge, this includes 24
locations). It counts the number of critters in those locations. If there are fewer
than c critters, the BlusterCritter’s color gets brighter (color values
increase). If there are c or more critters, the BlusterCritter’s color
darkens (color values decrease). Here, c is a value that indicates the courage of the
critter. It should be set in the constructor.

5. Create a class QuickCrab that extends CrabCritter. A QuickCrab
processes actors the same way a CrabCritter does. A QuickCrab
moves to one of the two locations, randomly selected, that are two spaces to its
right or left, if that location and the intervening location are both empty.
Otherwise, a QuickCrab moves like a CrabCritter.

6. Create a class KingCrab that extends CrabCritter. A KingCrab gets
the actors to be processed in the same way a CrabCritter does. A
KingCrab causes each actor that it processes to move one location further away
from the KingCrab. If the actor cannot move away, the KingCrab
removes it from the grid. When the KingCrab has completed processing the
actors, it moves like a CrabCritter.

Group Activity

Organize groups of 2–4 students.

1. Specify: Each group specifies a new creature that extends Critter. The
specifications must describe the properties and behavior of the new creature in
detail.

2. Design: The groups exchange specifications. Each group reads the specification
that it received and determines the needed variables and basic algorithms for the
creature.

3. Code: Each group implements the code for the creature in the specification that it
received.

4. Test: Each group writes test cases for the creature that it specified in step 1. Test
cases are exchanged as in step 2. The recipients verify that the implementations
meet the specifications.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

37

CrabCritter.Java

import info.gridworld.actor.Actor;
import info.gridworld.actor.Critter;
import info.gridworld.grid.Grid;
import info.gridworld.grid.Location;

import java.awt.Color;
import java.util.ArrayList;

/**
 * A CrabCritter looks at a limited set of neighbors when it eats and moves.
 * This class is not tested on the AP CS A and AB Exams.
 */
public class CrabCritter extends Critter
{
 public CrabCritter()
 {
 setColor(Color.RED);
 }

 /**
 * A crab gets the actors in the three locations immediately in front, to its
 * front-right and to its front-left
 * @return a list of actors occupying these locations
 */
 public ArrayList<Actor> getActors()
 {
 ArrayList<Actor> actors = new ArrayList<Actor>();
 int[] dirs ={ Location.AHEAD, Location.HALF_LEFT, Location.HALF_RIGHT };
 for (Location loc : getLocationsInDirections(dirs))
 {
 Actor a = getGrid().get(loc);
 if (a != null)
 actors.add(a);
 }

 return actors;
 }

 /**
 * @return list of empty locations immediately to the right and to the left
 */
 public ArrayList<Location> getMoveLocations()
 {
 ArrayList<Location> locs = new ArrayList<Location>();
 int[] dirs = { Location.LEFT, Location.RIGHT };
 for (Location loc : getLocationsInDirections(dirs))
 if (getGrid().get(loc) == null)
 locs.add(loc);

 return locs;
 }

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

38

 /**
 * If the crab critter doesn't move, it randomly turns left or right.
 */
 public void makeMove(Location loc)
 {
 if (loc.equals(getLocation()))
 {
 double r = Math.random();
 int angle;
 if (r < 0.5)
 angle = Location.LEFT;
 else
 angle = Location.RIGHT;
 setDirection(getDirection() + angle);
 }
 else
 super.makeMove(loc);
 }

 /**
 * Finds the valid adjacent locations of this critter in different
 * directions.
 * @param directions - an array of directions (which are relative to the
 * current direction)
 * @return a set of valid locations that are neighbors of the current
 * location in the given directions
 */
 public ArrayList<Location> getLocationsInDirections(int[] directions)
 {
 ArrayList<Location> locs = new ArrayList<Location>();
 Grid gr = getGrid();
 Location loc = getLocation();

 for (int d : directions)
 {
 Location neighborLoc = loc.getAdjacentLocation(getDirection() + d);
 if (gr.isValid(neighborLoc))
 locs.add(neighborLoc);
 }
 return locs;
 }
}

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

39

GridWorld Case Study
Part 5: Grid Data Structures (AP® CS AB only)

The AbstractGrid Class

Two concrete implementations of the Grid interface are provided, one for a bounded
grid that has a fixed number of rows and columns, and a second for an unbounded grid,
for which any row and column values are valid. Rather than have repeated code in two
classes, the AbstractGrid class defines five methods of the Grid interface that
are common to both implementations.

public ArrayList<E> getNeighbors(Location loc)
public ArrayList<Location> getValidAdjacentLocations(Location loc)
public ArrayList<Location> getEmptyAdjacentLocations(Location loc)
public ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
public String toString()

The code for these methods uses other methods specified in the interface. Here is the
definition of the getNeighbors method. Note that the same method works for
bounded and unbounded grids.

public ArrayList<E> getNeighbors(Location loc)
{
 ArrayList<E> neighbors = new ArrayList<E>();
 for (Location neighborLoc : getOccupiedAdjacentLocations(loc))
 neighbors.add(get(neighborLoc));
 return neighbors;
}

The AbstractGrid class is a superclass of the BoundedGrid and
UnboundedGrid classes. Since AbstractGrid does not define all methods
specified by the Grid interface, it is an abstract class. The concrete BoundedGrid
and UnboundedGrid classes define the methods of the Grid interface that are not
defined in AbstractGrid. This design is illustrated in the following figure.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

40

Do You Know?
 Set 10

The source code for the AbstractGrid class is in Appendix D.

1. Where is the isValid method specified? Which classes provide an
implementation of this method?

2. Which AbstractGrid methods call the isValid method? Why don’t the
other methods need to call it?

3. Which methods of the Grid interface are called in the getNeighbors
method? Which classes provide implementations of these methods?

4. Why must the get method, which returns an object of type E, be used in the
getEmptyAdjacentLocations method when this method returns
locations, not objects of type E?

5. What would be the effect of replacing the constant Location.HALF_RIGHT
with Location.RIGHT in the two places where it occurs in the
getValidAdjacentLocations method?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

41

The BoundedGrid Class

A bounded grid has a fixed number of rows and columns. You can access only locations
that are within the bounds of the grid. If you try to access an invalid location, a run-time
exception will be thrown.

The BoundedGrid<E> class stores grid occupants in a two-dimensional array.

private Object[][] occupantArray;

Note that occupantArray is declared to hold references of type Object rather
than the generic type E. (In the Java language, it is impossible to declare arrays of
generic types.) Nevertheless, all elements of occupantArray must belong to the
type E. Only the put method adds elements to the array, and it requires elements of
type E.

Do You Know?
 Set 11

The source code for the BoundedGrid class is in Appendix D.

1. What ensures that a grid has at least one valid location?
2. How is the number of columns in the grid determined by the getNumCols

method? What assumption about the grid makes this possible?
3. What are the requirements for a Location to be valid in a BoundedGrid?

In the next four questions, let r = number of rows, c = number of
columns, and n = number of occupied locations.

4. What type is returned by the getOccupiedLocations method? What is the
time complexity (Big-Oh) for this method?

5. What type is returned by the get method? What parameter is needed? What is
the time complexity (Big-Oh) for this method?

6. What conditions may cause an exception to be thrown by the put method?
What is the time complexity (Big-Oh) for this method?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

42

7. What type is returned by the remove method? What happens when an attempt
is made to remove an item from an empty location? What is the time complexity
(Big-Oh) for this method?

8. Based on the answers to questions 4, 5, 6, and 7, would you consider this an
efficient implementation? Justify your answer.

The UnboundedGrid Class

In an unbounded grid, any location is valid, even when the row or column is negative or
very large. Since there is no bound on the row or column of a location in this grid, the
UnboundedGrid<E> class does not use a fixed size two-dimensional array. Instead, it
stores occupants in a Map<Location, E>. The key type of the map is Location
and the value type is E, the type of the grid occupants.

The numRows and numCols methods both return -1 to indicate that an unbounded
grid does not have any specific number of rows or columns. The isValid method
always returns true. The get, put, and remove methods simply invoke the
corresponding Map methods. The getOccupiedLocations method returns the
same locations that are contained in the key set for the map.

Do You Know?
 Set 12

The source code for the UnboundedGrid class is in Appendix D.

1. Which method must the Location class implement so that an instance of
HashMap can be used for the map? What would be required of the Location
class if a TreeMap were used instead? Does Location satisfy these
requirements?

2. Why are the checks for null included in the get, put, and remove
methods? Why are no such checks included in the corresponding methods for the
BoundedGrid?

3. What is the average time complexity (Big-Oh) for the three methods: get, put,
and remove? What would it be if a TreeMap were used instead of a
HashMap?

4. How would the behavior of this class differ, aside from time complexity, if a
TreeMap were used instead of a HashMap?

5. Could a map implementation be used for a bounded grid? What advantage, if any,
would the two-dimensional array implementation that is used by the
BoundedGrid class have over a map implementation?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

43

Exercises

1. Suppose that a program requires a very large bounded grid that contains very few
objects and that the program frequently calls the getOccupiedLocations
method (as, for example, ActorWorld). Create a class
SparseBoundedGrid that uses a “sparse array” implementation. Your
solution need not be a generic class; you may simply store occupants of type
Object.

The “sparse array” is an array list of linked lists. Each linked list entry holds both
a grid occupant and a column index. Each entry in the array list is a linked list or
is null if that row is empty.

You may choose to implement the linked list in one of two ways. You can use
raw list nodes.

public class SparseGridNode
{
 private Object occupant;
 private int col;
 private SparseGridNode next;
 . . .
}

Or you can use a LinkedList<OccupantInCol> with a helper class.

public class OccupantInCol
{
 private Object occupant;
 private int col;
 . . .
}

For a grid with r rows and c columns, the sparse array has length r. Each of the
linked lists has maximum length c.

Implement the methods specified by the Grid interface using this data
structure. Why is this a more time-efficient implementation than
BoundedGrid?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

44

The World has a public addGridClass method. Since the ActorWorld
is a World, you can call this method in a runner. Here is the code to add a new
grid to the GUI.

import info.gridworld.actor.Actor;
import info.gridworld.actor.ActorWorld;
import info.gridworld.grid.Location;
import info.gridworld.actor.Critter;
import info.gridworld.actor.Rock;
import info.gridworld.actor.Flower;

/**
 * This class runs a world with additional grid choices.
 */
public class SparseGridRunner
{
 public static void main(String[] args)
 {
 ActorWorld world = new ActorWorld();
 world.addGridClass("SparseBoundedGrid");
 world.addGridClass("SparseBoundedGrid2");
 world.addGridClass("SparseBoundedGrid3");
 world.addGridClass("UnboundedGrid2");
 world.add(new Location(2, 2), new Critter());
 world.show();
 }
}

When you execute a runner class and choose the World menu->set grid, the new
grid type will be available for you to choose.

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals)
and www.collegeboard.com/apstudents (for AP students and parents).

45

2. Consider using a HashMap or TreeMap to implement the
SparseBoundedGrid. How could you use the UnboundedGrid class to
accomplish this task? Which methods of UnboundedGrid could be used
without change?

Fill in the following chart to compare the expected Big-Oh efficiencies for each
implementation of the SparseBoundedGrid.

Let r = number of rows, c = number of columns, and n = number of occupied locations

Methods SparseGridNode
version

LinkedList<OccupantInCol>
version

HashMap
version

TreeMap
version

getNeighbors
getEmptyAdjacentLocations
getOccupiedAdjacentLocations
getOccupiedLocations
get
put
remove

3. Consider an implementation of an unbounded grid in which all valid locations
have non-negative row and column values. The constructor allocates a 16 x 16
array. When a call is made to the put method with a row or column index that
is outside the current array bounds, double both array bounds until they are large
enough, construct a new square array with those bounds, and place the existing
occupants into the new array.

Implement the methods specified by the Grid interface using this data
structure. What is the Big-Oh efficiency of the get method? What is the
efficiency of the put method when the row and column index values are within
the current array bounds? What is the efficiency when the array needs to be
resized?

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and
www.collegeboard.com/apstudents (for AP students and parents).

Quick Reference

AP® Computer Science A and AB

© 2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and
www.collegeboard.com/apstudents (for AP students and parents).

Content of Appendixes

Appendix A . Class Summary and Index
Appendix B . Testable API
Appendix C . Testable Code for APCS A/AB
Appendix D . Testable Code for APCS AB Only
Appendix E . Quick Reference A/AB
Appendix F . Quick Reference AB Only
Appendix G . Index for Source Code

Appendix A Class Summary and Index

A – 1

Class Summary and Index
Class*

Package

Description Page Tested in AP
CS Exam?

AbstractGrid

info.gridworld.grid

AbstractGrid contains the
methods that are common to
grid implementations.

D - 1, D - 2 Implementation
(AB only)

Actor

info.gridworld.actor

An Actor is an entity that can
act. It has a color and direction. B - 3 API only

ActorWorld

info.gridworld.actor

An ActorWorld is occupied
by actors.

Student Manual
Part 3 Not tested

BoundedGrid

info.gridworld.grid

A BoundedGrid is a
rectangular grid with a finite
number of rows and columns.

D - 3, D – 4

Implementation
(AB only)

BoxBug

(none)
A BoxBug traces out a square
“box” of a given size. C - 3 Implementation

BoxBugRunner

(none)
This class runs a world that
contains box bugs.

Student Manual
Part 2 Not tested

Bug

info.gridworld.actor

A Bug is an actor that can
move and turn. It drops flowers
as it moves.

C - 1, C - 2 Implementation

BugRunner

(none)

This class runs a world that
contains a bug and a rock,
added at random locations.

In the
projects/

firstProject
folder of the code

distribution

Not tested

ChameleonCritter

(none)

A ChameleonCritter takes
on the color of neighboring
actors as it moves through the
grid.

C - 6 Implementation

ChameleonRunner

(none)
This class runs a world that
contains chameleon critters.

In the
projects/

critters folder
of the code
distribution

Not tested

*Bold formatting of a class name indicates that students are responsible for the use of that class on the AP Computer
Science Exams at the level indicated in this chart.

Appendix A Class Summary and Index

A - 2

Class*

Package
Description Page Tested in AP

CS Exam?

CrabCritter

(none)

A CrabCritter looks at a
limited set of neighbors when it
eats and moves.

Student Manual
Part 4 Not tested

CrabRunner

(none)
This class runs a world that
contains crab critters.

In the projects/
critters folder

of the code
distribution

Not tested

Critter

info.gridworld.actor

A Critter is an actor that
moves through its world,
processing other actors in some
way and then picking a new
location.

C - 4, C - 5,
C - 6 Implementation

CritterRunner

(none)
This class runs a world that
contains critters.

In the projects/
critters folder

of the code
distribution

Not tested

Flower

info.gridworld.actor

A Flower is an actor that
darkens over time. Some actors
drop flowers as they move.

B - 4 API only

Grid

info.gridworld.grid

Grid provides an interface for
a two-dimensional, grid-like
environment containing
arbitrary objects.

B - 2 API only

Location

info.gridworld.grid

A Location object represents
the row and column of a
location in a two-dimensional
grid.

B - 1 API only

Rock

info.gridworld.actor

A Rock is an actor that does
nothing. It is commonly used to
block other actors from
moving.

B - 4 API only

UnboundedGrid

info.gridworld.grid

An UnboundedGrid is a
rectangular grid with an
unbounded number of rows and
columns.

D - 5, D - 6 Implementation
(AB only)

World

info.gridworld.world

A World is the mediator
between a grid and the
GridWorld GUI.

In the API
documentation of

the code
distribution

Not tested

*Bold formatting of a class name indicates that students are responsible for the use of that class on the AP Computer
Science Exams at the level indicated in this chart.

Appendix B Testable API

 B - 1

Appendix B — Testable API

info.gridworld.grid.Location class (implements Comparable)

public Location(int r, int c)
constructs a location with given row and column coordinates

public int getRow()
returns the row of this location

public int getCol()
returns the column of this location

public Location getAdjacentLocation(int direction)
returns the adjacent location in the direction that is closest to direction

public int getDirectionToward(Location target)
returns the closest compass direction from this location toward target

public boolean equals(Object other)
returns true if other is a Location with the same row and column as this location; false otherwise

public int hashCode()
returns a hash code for this location

public int compareTo(Object other)
returns a negative integer if this location is less than other, zero if the two locations are equal, or a positive
integer if this location is greater than other. Locations are ordered in row-major order.
Precondition: other is a Location object.

public String toString()
returns a string with the row and column of this location, in the format (row, col)

Compass directions:
public static final int NORTH = 0;
public static final int EAST = 90;
public static final int SOUTH = 180;
public static final int WEST = 270;
public static final int NORTHEAST = 45;
public static final int SOUTHEAST = 135;
public static final int SOUTHWEST = 225;
public static final int NORTHWEST = 315;

Turn angles:
public static final int LEFT = -90;
public static final int RIGHT = 90;
public static final int HALF_LEFT = -45;
public static final int HALF_RIGHT = 45;
public static final int FULL_CIRCLE = 360;
public static final int HALF_CIRCLE = 180;
public static final int AHEAD = 0;

Appendix B Testable API

 B - 2

info.gridworld.grid.Grid<E> interface

int getNumRows()
returns the number of rows, or -1 if this grid is unbounded

int getNumCols()
returns the number of columns, or -1 if this grid is unbounded

boolean isValid(Location loc)
returns true if loc is valid in this grid, false otherwise
Precondition: loc is not null

E put(Location loc, E obj)
puts obj at location loc in this grid and returns the object previously at that location (or null if the
location was previously unoccupied).
Precondition: (1) loc is valid in this grid (2) obj is not null

E remove(Location loc)
removes the object at location loc from this grid and returns the object that was removed (or null if the
location is unoccupied)
Precondition: loc is valid in this grid

E get(Location loc)
returns the object at location loc (or null if the location is unoccupied)
Precondition: loc is valid in this grid

ArrayList<Location> getOccupiedLocations()
returns an array list of all occupied locations in this grid

ArrayList<Location> getValidAdjacentLocations(Location loc)
returns an array list of the valid locations adjacent to loc in this grid
Precondition: loc is valid in this grid

ArrayList<Location> getEmptyAdjacentLocations(Location loc)
returns an array list of the valid empty locations adjacent to loc in this grid
Precondition: loc is valid in this grid

ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
returns an array list of the valid occupied locations adjacent to loc in this grid
Precondition: loc is valid in this grid

ArrayList<E> getNeighbors(Location loc)
returns an array list of the objects in the occupied locations adjacent to loc in this grid
Precondition: loc is valid in this grid

Appendix B Testable API

 B - 3

info.gridworld.actor.Actor class

public Actor()
constructs a blue actor that is facing north

public Color getColor()
returns the color of this actor

public void setColor(Color newColor)
sets the color of this actor to newColor

public int getDirection()
returns the direction of this actor, an angle between 0 and 359 degrees

public void setDirection(int newDirection)
sets the direction of this actor to the angle between 0 and 359 degrees that is equivalent to newDirection

public Grid<Actor> getGrid()
returns the grid of this actor, or null if this actor is not contained in a grid

public Location getLocation()
returns the location of this actor, or null if this actor is not contained in a grid

public void putSelfInGrid(Grid<Actor> gr, Location loc)
puts this actor into location loc of grid gr. If there is another actor at loc, it is removed.
Precondition: (1) This actor is not contained in a grid (2) loc is valid in gr

public void removeSelfFromGrid()
removes this actor from its grid.
Precondition: this actor is contained in a grid

public void moveTo(Location newLocation)
moves this actor to newLocation. If there is another actor at newLocation, it is removed.
Precondition: (1) This actor is contained in a grid (2) newLocation is valid in the grid of this actor

public void act()
reverses the direction of this actor. Override this method in subclasses of Actor to define types of actors with
different behavior

public String toString()
returns a string with the location, direction, and color of this actor

Appendix B Testable API

 B - 4

info.gridworld.actor.Rock class (extends Actor)

public Rock()
constructs a black rock

public Rock(Color rockColor)
constructs a rock with color rockColor

public void act()
 overrides the act method in the Actor class to do nothing

info.gridworld.actor.Flower class (extends Actor)

public Flower()
constructs a pink flower

public Flower(Color initialColor)
constructs a flower with color initialColor

public void act()
causes the color of this flower to darken

Appendix C Testable Code for APCS A/AB

 C - 1

Appendix C — Testable Code for APCS A/AB

Bug.java

package info.gridworld.actor;

import info.gridworld.grid.Grid;
import info.gridworld.grid.Location;

import java.awt.Color;

/**
 * A Bug is an actor that can move and turn. It drops flowers as it moves.
 * The implementation of this class is testable on the AP CS A and AB Exams.
 */
public class Bug extends Actor
{
 /**
 * Constructs a red bug.
 */
 public Bug()
 {
 setColor(Color.RED);
 }

 /**
 * Constructs a bug of a given color.
 * @param bugColor the color for this bug
 */
 public Bug(Color bugColor)
 {
 setColor(bugColor);
 }

 /**
 * Moves if it can move, turns otherwise.
 */
 public void act()
 {
 if (canMove())
 move();
 else
 turn();
 }

 /**
 * Turns the bug 45 degrees to the right without changing its location.
 */
 public void turn()
 {
 setDirection(getDirection() + Location.HALF_RIGHT);
 }

Appendix C Testable Code for APCS A/AB

 C - 2

 /**
 * Moves the bug forward, putting a flower into the location it previously occupied.
 */
 public void move()
 {
 Grid<Actor> gr = getGrid();
 if (gr == null)
 return;
 Location loc = getLocation();
 Location next = loc.getAdjacentLocation(getDirection());
 if (gr.isValid(next))
 moveTo(next);
 else
 removeSelfFromGrid();
 Flower flower = new Flower(getColor());
 flower.putSelfInGrid(gr, loc);
 }

 /**
 * Tests whether this bug can move forward into a location that is empty or contains a flower.
 * @return true if this bug can move.
 */
 public boolean canMove()
 {
 Grid<Actor> gr = getGrid();
 if (gr == null)
 return false;
 Location loc = getLocation();
 Location next = loc.getAdjacentLocation(getDirection());
 if (!gr.isValid(next))
 return false;
 Actor neighbor = gr.get(next);
 return (neighbor == null) || (neighbor instanceof Flower);
 // ok to move into empty location or onto flower
 // not ok to move onto any other actor
 }
}

Appendix C Testable Code for APCS A/AB

 C - 3

BoxBug.java

import info.gridworld.actor.Bug;

/**
 * A BoxBug traces out a square “box” of a given size.
 * The implementation of this class is testable on the AP CS A and AB Exams.
 */
public class BoxBug extends Bug
{
 private int steps;
 private int sideLength;

 /**
 * Constructs a box bug that traces a square of a given side length
 * @param length the side length
 */
 public BoxBug(int length)
 {
 steps = 0;
 sideLength = length;
 }

 /**
 * Moves to the next location of the square.
 */
 public void act()
 {
 if (steps < sideLength && canMove())
 {
 move();
 steps++;
 }
 else
 {
 turn();
 turn();
 steps = 0;
 }
 }
}

Appendix C Testable Code for APCS A/AB

 C - 4

Critter.java

package info.gridworld.actor;

import info.gridworld.grid.Location;
import java.util.ArrayList;

/**
 * A Critter is an actor that moves through its world, processing
 * other actors in some way and then moving to a new location.
 * Define your own critters by extending this class and overriding any methods of this class except for act.
 * When you override these methods, be sure to preserve the postconditions.
 * The implementation of this class is testable on the AP CS A and AB Exams.
 */
public class Critter extends Actor
{
 /**
 * A critter acts by getting a list of other actors, processing that list, getting locations to move to,
 * selecting one of them, and moving to the selected location.
 */
 public void act()
 {
 if (getGrid() == null)
 return;
 ArrayList<Actor> actors = getActors();
 processActors(actors);
 ArrayList<Location> moveLocs = getMoveLocations();
 Location loc = selectMoveLocation(moveLocs);
 makeMove(loc);
 }

 /**
 * Gets the actors for processing. Implemented to return the actors that occupy neighboring grid locations.
 * Override this method in subclasses to look elsewhere for actors to process.
 * Postcondition: The state of all actors is unchanged.
 * @return a list of actors that this critter wishes to process.
 */
 public ArrayList<Actor> getActors()
 {
 return getGrid().getNeighbors(getLocation());
 }

Appendix C Testable Code for APCS A/AB

 C - 5

 /**
 * Processes the elements of actors. New actors may be added to empty locations.
 * Implemented to “eat” (i.e., remove) selected actors that are not rocks or critters.
 * Override this method in subclasses to process actors in a different way.
 * Postcondition: (1) The state of all actors in the grid other than this critter and the
 * elements of actors is unchanged. (2) The location of this critter is unchanged.
 * @param actors the actors to be processed
 */
 public void processActors(ArrayList<Actor> actors)
 {
 for (Actor a : actors)
 {
 if (!(a instanceof Rock) && !(a instanceof Critter))
 a.removeSelfFromGrid();
 }
 }

 /**
 * Gets a list of possible locations for the next move. These locations must be valid in the grid of this critter.
 * Implemented to return the empty neighboring locations. Override this method in subclasses to look
 * elsewhere for move locations.
 * Postcondition: The state of all actors is unchanged.
 * @return a list of possible locations for the next move
 */
 public ArrayList<Location> getMoveLocations()
 {
 return getGrid().getEmptyAdjacentLocations(getLocation());
 }

 /**
 * Selects the location for the next move. Implemented to randomly pick one of the possible locations,
 * or to return the current location if locs has size 0. Override this method in subclasses that
 * have another mechanism for selecting the next move location.
 * Postcondition: (1) The returned location is an element of locs, this critter's current location, or null.
 * (2) The state of all actors is unchanged.
 * @param locs the possible locations for the next move
 * @return the location that was selected for the next move.
 */
 public Location selectMoveLocation(ArrayList<Location> locs)
 {
 int n = locs.size();
 if (n == 0)
 return getLocation();
 int r = (int) (Math.random() * n);
 return locs.get(r);
 }

Appendix C Testable Code for APCS A/AB

 C - 6

 /**
 * Moves this critter to the given location loc, or removes this critter from its grid if loc is null.
 * An actor may be added to the old location. If there is a different actor at location loc, that actor is
 * removed from the grid. Override this method in subclasses that want to carry out other actions
 * (for example, turning this critter or adding an occupant in its previous location).
 * Postcondition: (1) getLocation() == loc.
 * (2) The state of all actors other than those at the old and new locations is unchanged.
 * @param loc the location to move to
 */
 public void makeMove(Location loc)
 {
 if (loc == null)
 removeSelfFromGrid();
 else
 moveTo(loc);
 }
}

ChameleonCritter.java

import info.gridworld.actor.Actor;
import info.gridworld.actor.Critter;
import info.gridworld.grid.Location;

import java.util.ArrayList;

/**
 * A ChameleonCritter takes on the color of neighboring actors as it moves through the grid.
 * The implementation of this class is testable on the AP CS A and AB Exams.
 */
public class ChameleonCritter extends Critter
{
 /**
 * Randomly selects a neighbor and changes this critter’s color to be the same as that neighbor’s.
 * If there are no neighbors, no action is taken.
 */
 public void processActors(ArrayList<Actor> actors)
 {
 int n = actors.size();
 if (n == 0)
 return;
 int r = (int) (Math.random() * n);

 Actor other = actors.get(r);
 setColor(other.getColor());
 }

 /**
 * Turns towards the new location as it moves.
 */
 public void makeMove(Location loc)
 {
 setDirection(getLocation().getDirectionToward(loc));
 super.makeMove(loc);
 }
}

 Appendix D Testable Code for APCS AB

 D -

1

Appendix D — Testable Code for APCS AB

AbstractGrid.java

package info.gridworld.grid;

import java.util.ArrayList;

/**
 * AbstractGrid contains the methods that are common to grid implementations.
 * The implementation of this class is testable on the AP CS AB Exam.
 */
public abstract class AbstractGrid<E> implements Grid<E>
{

 public ArrayList<E> getNeighbors(Location loc)
 {
 ArrayList<E> neighbors = new ArrayList<E>();
 for (Location neighborLoc : getOccupiedAdjacentLocations(loc))
 neighbors.add(get(neighborLoc));
 return neighbors;
 }

 public ArrayList<Location> getValidAdjacentLocations(Location loc)
 {
 ArrayList<Location> locs = new ArrayList<Location>();

 int d = Location.NORTH;
 for (int i = 0; i < Location.FULL_CIRCLE / Location.HALF_RIGHT; i++)
 {
 Location neighborLoc = loc.getAdjacentLocation(d);
 if (isValid(neighborLoc))
 locs.add(neighborLoc);
 d = d + Location.HALF_RIGHT;
 }
 return locs;
 }

 public ArrayList<Location> getEmptyAdjacentLocations(Location loc)
 {
 ArrayList<Location> locs = new ArrayList<Location>();
 for (Location neighborLoc : getValidAdjacentLocations(loc))
 {
 if (get(neighborLoc) == null)
 locs.add(neighborLoc);
 }
 return locs;
 }

 Appendix D Testable Code for APCS AB

 D -

2

 public ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
 {
 ArrayList<Location> locs = new ArrayList<Location>();
 for (Location neighborLoc : getValidAdjacentLocations(loc))
 {
 if (get(neighborLoc) != null)
 locs.add(neighborLoc);
 }
 return locs;
 }

 /**
 * Creates a string that describes this grid.
 * @return a string with descriptions of all objects in this grid (not
 * necessarily in any particular order), in the format {loc=obj, loc=obj, ...}
 */
 public String toString()
 {
 String s = "{";
 for (Location loc : getOccupiedLocations())
 {
 if (s.length() > 1)
 s += ", ";
 s += loc + "=" + get(loc);
 }
 return s + "}";
 }
}

 Appendix D Testable Code for APCS AB

 D -

3

BoundedGrid.java

package info.gridworld.grid;

import java.util.ArrayList;

/**
 * A BoundedGrid is a rectangular grid with a finite number of rows and columns.
 * The implementation of this class is testable on the AP CS AB Exam.
 */
public class BoundedGrid<E> extends AbstractGrid<E>
{
 private Object[][] occupantArray; // the array storing the grid elements

 /**
 * Constructs an empty bounded grid with the given dimensions.
 * (Precondition: rows > 0 and cols > 0.)
 * @param rows number of rows in BoundedGrid
 * @param cols number of columns in BoundedGrid
 */
 public BoundedGrid(int rows, int cols)
 {
 if (rows <= 0)
 throw new IllegalArgumentException("rows <= 0");
 if (cols <= 0)
 throw new IllegalArgumentException("cols <= 0");
 occupantArray = new Object[rows][cols];
 }

 public int getNumRows()
 {
 return occupantArray.length;
 }

 public int getNumCols()
 {
 // Note: according to the constructor precondition, numRows() > 0, so
 // theGrid[0] is non-null.
 return occupantArray[0].length;
 }

 public boolean isValid(Location loc)
 {
 return 0 <= loc.getRow() && loc.getRow() < getNumRows()
 && 0 <= loc.getCol() && loc.getCol() < getNumCols();
 }

 Appendix D Testable Code for APCS AB

 D -

4

 public ArrayList<Location> getOccupiedLocations()
 {
 ArrayList<Location> theLocations = new ArrayList<Location>();

 // Look at all grid locations.
 for (int r = 0; r < getNumRows(); r++)
 {
 for (int c = 0; c < getNumCols(); c++)
 {
 // If there's an object at this location, put it in the array.
 Location loc = new Location(r, c);
 if (get(loc) != null)
 theLocations.add(loc);
 }
 }

 return theLocations;
 }

 public E get(Location loc)
 {
 if (!isValid(loc))
 throw new IllegalArgumentException("Location " + loc + " is not valid");
 return (E) occupantArray[loc.getRow()][loc.getCol()]; // unavoidable warning
 }

 public E put(Location loc, E obj)
 {
 if (!isValid(loc))
 throw new IllegalArgumentException("Location " + loc+ " is not valid");
 if (obj == null)
 throw new NullPointerException("obj == null");

 // Add the object to the grid.
 E oldOccupant = get(loc);
 occupantArray[loc.getRow()][loc.getCol()] = obj;
 return oldOccupant;
 }

 public E remove(Location loc)
 {
 if (!isValid(loc))
 throw new IllegalArgumentException("Location " + loc + " is not valid");

 // Remove the object from the grid.
 E r = get(loc);
 occupantArray[loc.getRow()][loc.getCol()] = null;
 return r;
 }
}

 Appendix D Testable Code for APCS AB

 D -

5

UnboundedGrid.java

package info.gridworld.grid;

import java.util.ArrayList;

import java.util.*;

/**
 * An UnboundedGrid is a rectangular grid with an unbounded number of rows and columns.
 * The implementation of this class is testable on the AP CS AB Exam.
 */
public class UnboundedGrid<E> extends AbstractGrid<E>
{
 private Map<Location, E> occupantMap;

 /**
 * Constructs an empty unbounded grid.
 */
 public UnboundedGrid()
 {
 occupantMap = new HashMap<Location, E>();
 }

 public int getNumRows()
 {
 return -1;
 }

 public int getNumCols()
 {
 return -1;
 }

 public boolean isValid(Location loc)
 {
 return true;
 }

 public ArrayList<Location> getOccupiedLocations()
 {
 ArrayList<Location> a = new ArrayList<Location>();
 for (Location loc : occupantMap.keySet())
 a.add(loc);
 return a;
 }

 public E get(Location loc)
 {
 if (loc == null)
 throw new NullPointerException("loc == null");
 return occupantMap.get(loc);
 }

 Appendix D Testable Code for APCS AB

 D -

6

 public E put(Location loc, E obj)
 {
 if (loc == null)
 throw new NullPointerException("loc == null");
 if (obj == null)
 throw new NullPointerException("obj == null");
 return occupantMap.put(loc, obj);
 }

 public E remove(Location loc)
 {
 if (loc == null)
 throw new NullPointerException("loc == null");
 return occupantMap.remove(loc);
 }
}

Appendix E Quick Reference A/AB

E - 1

Quick Reference A/AB

Location Class (implements Comparable)

public Location(int r, int c)
public int getRow()
public int getCol()
public Location getAdjacentLocation(int direction)
public int getDirectionToward(Location target)
public boolean equals(Object other)
public int hashCode()
public int compareTo(Object other)
public String toString()

NORTH, EAST, SOUTH, WEST, NORTHEAST, SOUTHEAST, NORTHWEST, SOUTHWEST
LEFT, RIGHT, HALF_LEFT, HALF_RIGHT, FULL_CIRCLE, HALF_CIRCLE, AHEAD

Grid<E> Interface

int getNumRows()
int getNumCols()
boolean isValid(Location loc)
E put(Location loc, E obj)
E remove(Location loc)
E get(Location loc)
ArrayList<Location> getOccupiedLocations()
ArrayList<Location> getValidAdjacentLocations(Location loc)
ArrayList<Location> getEmptyAdjacentLocations(Location loc)
ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
ArrayList<E> getNeighbors(Location loc)

Actor Class

public Actor()
public Color getColor()
public void setColor(Color newColor)
public int getDirection()
public void setDirection(int newDirection)
public Grid<Actor> getGrid()
public Location getLocation()
public void putSelfInGrid(Grid<Actor> gr, Location loc)
public void removeSelfFromGrid()
public void moveTo(Location newLocation)
public void act()
public String toString()

Appendix E Quick Reference A/AB

E - 2

Rock Class (extends Actor)

public Rock()
public Rock(Color rockColor)
public void act()

Flower Class (extends Actor)

public Flower()
public Flower(Color initialColor)
public void act()

Bug Class (extends Actor)

public Bug()
public Bug(Color bugColor)
public void act()
public void turn()
public void move()
public boolean canMove()

BoxBug Class (extends Bug)

public BoxBug(int n)
public void act()

Critter Class (extends Actor)

public void act()
public ArrayList<Actor> getActors()
public void processActors(ArrayList<Actor> actors)
public ArrayList<Location> getMoveLocations()
public Location selectMoveLocation(ArrayList<Location> locs)
public void makeMove(Location loc)

ChameleonCritter Class (extends Critter)

public void processActors(ArrayList<Actor> actors)
public void makeMove(Location loc)

Appendix F Quick Reference AB

F - 1

Quick Reference AB Only

AbstractGrid Class (implements Grid)

public ArrayList<E> getNeighbors(Location loc)
public ArrayList<Location> getValidAdjacentLocations(Location loc)
public ArrayList<Location> getEmptyAdjacentLocations(Location loc)
public ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
public String toString()

BoundedGrid Class (extends AbstractGrid)

public BoundedGrid(int rows, int cols)
public int getNumRows()
public int getNumCols()
public boolean isValid(Location loc)
public ArrayList<Location> getOccupiedLocations()
public E get(Location loc)
public E put(Location loc, E obj)
public E remove(Location loc)

UnboundedGrid Class (extends AbstractGrid)

public UnboundedGrid()
public int getNumRows()
public int getNumCols()
public boolean isValid(Location loc)
public ArrayList<Location> getOccupiedLocations()
public E get(Location loc)
public E put(Location loc, E obj)
public E remove(Location loc)

Appendix G Source Code Index

G - 1

Appendix G: Index for Source Code
This appendix provides an index for the Java source code found in Appendix C and Appendix D.

Bug.java

Bug() C1

Bug(Color bugColor) C1

act() C1

turn() C1

move() C2

canMove() C2

BoxBug.java

BoxBug(int length) C3

act() C3

Critter.java

act() C4

getActors() C4

processActors(ArrayList<Actor> actors) C5

getMoveLocations() C5

selectMoveLocation(ArrayList<Location> locs) C5

makeMove(Location loc) C6

ChameleonCritter.java

processActors(ArrayList<Actor> actors) C6

makeMove(Location loc) C6

Appendix G Source Code Index

G - 2

AbstractGrid.java

getNeighbors(Location loc) D1

getValidAdjacentLocations(Location loc) D1

getEmptyAdjacentLocations(Location loc) D1

getOccupiedAdjacentLocations(Location loc) D2

toString() D2

BoundedGrid.java

BoundedGrid(int rows, int cols) D3

getNumRows() D3

getNumCols() D3

isValid(Location loc) D3

getOccupiedLocations() D4

get(Location loc) D4

put(Location loc, E obj) D4

remove(Location loc) D4

UnboundedGrid.java

UnboundedGrid() D5

getNumRows() D5

getNumCols() D5

isValid(Location loc) D5

getOccupiedLocations() D5

get(Location loc) D5

put(Location loc, E obj) D6

remove(Location loc) D6

