
Unit 8. GridWorld Notes

Running Gridworld using DrJava.

1. Create a folder. Copy BugRunner.java and gridworld.jar file into the folder.

2. Open DrJava

and create a

Project. Save the

project in the folder

you just created.

When you click

Save, the Project

Properties window

appears.

3. Click the Add

button and select

the gridworld.jar

file.

Click OK.

4. In DrJava, open

the BugRunner file.

Compile the project

and run it.

Part 1. Observing and Experimenting with GridWorld

import info.gridworld.actor.ActorWorld;

import info.gridworld.actor.Bug;

import info.gridworld.actor.Rock;

public class BugRunner {

 public static void main(String[] args) {

 ActorWorld world = new ActorWorld();

 world.add(new Bug()); // adds a bug to a random empty spot

 world.add(new Rock()); // adds a rock to a random empty spot

 world.show(); // displays the grid

}

}

The value of an object's instance variables is sometimes called the object's state. An actor's state

is represented by four instance variables (these may not be the actual names):

1. __

2. __

3. __

4. __

When the Step button is clicked, the ___________ method for each actor in the grid is called. If

the Run button is clicked, then it is as if the Step button were being clicked again and again at

whatever speed the slider control is set at.

How does a Bug act?

1. If possible, it will more one square in the direction it is pointing. It can move on a

diagonal.

2. When it moves, it leave behind a _______________________

3. If its way is blocked by a wall, rock, or other bug, _____________________________

4. If its way is blocked by a flower, ___

Actor

Flower Rock Bug

The Model-View-Controller (MVC) Approach to Developing Programs. In this approach

each class falls into one of three categories.

 Model __

__

 View ___

__

 Control ___

__

Using this approach one can modify the "look" of a program without having to change any of the

model classes. Conversely, one could change how we model the behavior of objects without

having to change the look of the program. Gridworld has been developed using this approach.

We are only concerned with those classes that "model" the behavior of different actors in the

grid. Those classes that handle the display and the interaction with the user are considered "black

box" classes.

Part 2. Bug Variations. Here is the code for the Bug class's act method:

public void act() {

 if (canMove())

 move();

 else

 turn();

}

Extending the Bug class. Create another project and do the following:

1. Paste a copy of the gridworld.jar into the project folder.

2. Find the boxBug folder. Copy and paste the three files (BoxBug.gif, BoxBug.java, and

BoxBugRunner.java) into the folder.

3. Compile and run the project.

import info.gridworld.actor.ActorWorld;

import info.gridworld.grid.Location;

import java.awt.Color;

public class BoxBugRunner{

 public static void main(String[] args){

 ActorWorld world = new ActorWorld();

 BoxBug alice = new BoxBug(6);

 alice.setColor(Color.ORANGE);

 BoxBug bob = new BoxBug(3);

 world.add(new Location(7, 8), alice);

 world.add(new Location(5, 5), bob);

 world.show();

 }

}

Part 3. GridWorld Classes and Interfaces.

You want to get very comfortable with the classes and interfaces that make up Gridworld. You

will have most of the appendices available to you whenever you have a quiz or exam (including

the AP exam) but the better you know the material the faster you can solve the problems.

Some methods of the Location class.

Headers Comments

int getRow()

int getCol()

Location getAdjacentLocation(int direction)

int getDirectionToward(Location target)

There are also many static constants that can be useful

The grid inside the ActorWorld is represented by the Grid interface. By using an interface, one

can create an ActorWorld that consists of a bounded or unbounded grid and every actor still

interacts with the grid using the same set of methods. We will always be working with a bounded

grid.

Some methods of the Grid interface.

Headers Comments

int getNumRows()

int getNumCols()

boolean isValid(Location loc)

E get(Location loc) Precondition: loc is valid

ArrayList<Location> getOccupiedLocations()

ArrayList<Location> getValidAdjacentLocations()

ArrayList<Location> getEmptyAdjacentLocations ()

ArrayList<Location> getOccupiedAdjacentLocations()

ArrayList<E> getNeighbors()

The grid interface also specifies put and remove methods but don't use them.

You should understand all the methods in the Actor class. To add or remove an actor from the

grid, use these methods of the Actor class.

public void putSelfInGrid(Grid<Actor> gr, Location loc)

public void removeSelfFromGrid()

Important. When an actor is created, getLocation and getGrid both return null because the actor

has not yet been added to the ActorWorld. It is only after an actor is added that these methods

return non-null values.

Part 4. Interacting Objects

Objects of the Critter class interact with other actors around them. Its act method consists of calls

to the following methods.

Method Description Postcondition

getActors() Returns an array list of the

actors in the neighboring

locations.

The state of all actors is

unchanged.

processActors(ArrayList<Actor>

actors)

Removes all actors from

the grid that are specified

in the array list (except for

rocks and critters).

(1) The state of all actors in

the grid other than this

critter and the elements of

actors is unchanged.

(2) The location of this

actor is unchanged.

getMoveLocations() Returns an array list of

empty valid neighboring

locations.

The state of all actors is

unchanged.

selectMoveLocations(

ArrayList<Location> locs)

Returns a randomly

selected location from the

array list. If the size of locs

is zero, then return the

current location.

(1) The return location is an

element of locs, this

critter’s current location, or

null.

(2) The state of all actors is

unchanged.

makeMove(Location loc) Moves the critter to the

given location loc, or

removes the critter from its

grid if loc is null.

Note. An actor may be

added to the old location

(1) getLocation() == loc

(2) The state of all actors

other than those at the old

and new locations is

unchanged.

Some rules for extending the Critter class.

 Do NOT override the act method. Override one or more of the five above methods.

 When you override any of the five above methods, you must maintain the postconditions.

Appendix A.

Jar Files, Packages, and Import Statements.

A JAR (Java Archive) file consists of class files, images, and other resources. It is a common

way to distribute java applications or libraries.

A Java package is a mechanism for organizing Java classes into namespaces. Think of a

namespace as a collection of classes that all have unique names. “Java packages can be stored in

compressed files called JAR files, allowing classes to download faster as a group rather than one

at a time. Programmers also typically use packages to organize classes belonging to the same

category or providing similar functionality.” (Wikipedia)

Java has a number of core packages. Here are three:

java.lang Fundamental java classes including the String and Math classes.

This package is automatically “imported.”

java.util Contains various utility classes such as the Scanner class.

java.awt Contains various GUI related classes including the Color class.

If your program wants to use the Scanner and ArrayList classes (which are both in the java.util

package), then you should write this.

 import java.util.Scanner;

 import java.util.ArrayList;

If you write this:

 import java.util.*;

then you are making every class in the java.util package available to your class.

IMPORTANT. There are certain naming conventions used with packages that can be

misleading. For instance, here are the names of two packages in java:

 java.awt

 java.awt.font

If you wrote

 import java.awt.*;

you would be importing all the classes in java.awt but not the java.awt.font package.

java.awt.font is a separate package but named in this way because the font package is related to

awt package.

Here are two packages in GridWorld

Name Includes these classes and interfaces

info.gridworld.grid

info.gridworld.actor

